Ethical Hacking and Pentesting (COM3031) - SEMR, 2024 /5
Coursework: Part B Report

Pascal Duncan Lek Hou U
I

April 10, 2025

Contents
1 Introduction 1
2 The ELF File Structure 2
2.1 ELF Header e e e e e 2
2.2 ELF Sections e 2
2.3 ELF Segments 3
3 Symbol Table, GOT, PLT 4
3.1 Symbol Table 4
3.2 Global Offset Table (GOT) i 4
3.3 Procedure Linkage Table (PLT) 5
4 Additional Analysis 6
Appendices 7
A Chosen C Program 7

1 Introduction

The C Program chosen for analysis can be found in the appendix of this document. The file is named
‘cw.c” and was compiled into a binary as ‘cw’ using gcc -o cw cw.c -no-pie.

The structure of the rest of this report is as follows, Section 2 analyses the ELF File’s Structure,
dissecting contents of the ELF header, particular ELF sections and how data is populated within
them. Then, the segments that make up the ELF file and how they differ from sections. Section 3
investigates the content of the symbol table, the functions of the GOT and PLT, and briefly dissect the
disassembly of the PLT. Finally, Section 4 discusses shared library dependencies as shown in Figure
9, and some insights from hexdumps to be gained of the raw ELF file.

2 THE ELF FILE STRUCTURE

2 The ELF File Structure

2.1 ELF Header

Running readelf -h cw, we can inspect the header and see that ‘cw’ is an executable file indicated
by EXEC and has target architecture Advanced Micro Devices X86-64. The entry point address is
0x4010b0 (Figure 1).

[04/01/25]seed@VM:~/.../cw$ readelf -h cw

ELF Header:
Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 0O 00 00 00
Class:
Data: 2's complement, little endian
Version: 1 (current)
0S/ABI: UNIX - System V
ABI Version: 0
Type: EXEC (Executable file)
Machine: Advanced Micro Devices X86-64
Version: 0x1
Entry point address: 0x4010b0
Start of program headers: 64 (bytes into file)
Start of section headers: 15104 (bytes into file)
Flags: 0x0
Size of this header: 64 (bytes)
Size of program headers: 56 (bytes)
Number of program headers: 13
Size of section headers: 64 (bytes)
Number of section headers: 31
Section header string table index: 30

Figure 1: ELF Header

2.2 ELF Sections

Using readelf -S cw shows the section headers contained in the binary. The .text section contains
the executable instructions for functions in the program, and is marked as executable at runtime
indicated with the X flag. This would include the functions main() (which is the program’s entry
point after runtime setup), greet(), vulnerableFunction(), and printSecretKey() (which are
declared at lines 31, 13, 18, 26 in A). It is addressed at 0x4010b0, has been allocated 0x2e5 bytes in
the binary (Figure 2).

YUUUUUUUYUUUUL4Y UUUUUUYUUUUUUUULY AR] v 10
[15] .text PROGBITS 00000000004010b0 000O10bO

00000000000002e5 0000000000000000 AX 0 0 16
A1 fini DRNERTTS AAAAAAAAANAATRAR AAAMTRAR

Figure 2: .text section

.data and .bss contain the initialised and uninitialised global and static variables respectively
(Figure 3). From the section header we can see that .data has type PROGBITS meaning it holds actual
bytes in the file. Whereas .bss has type NOBITS, so the loader just reserves the space in memory, and
does not store any bytes in the file.

(\AVAVAVAVAVAVIVIVAVIVIVIVIV e Lo) \AVAVAVIVAVIVIVAVIVAVIVIVIVLY e} WA V) V) o
[25] .data PROGBITS 0000000000404040 00003040

000000000000002c 0000000000000000 WA 0 0 16
[26] .bss NOBITS 0000000000404080 0000306¢C

0000000000000080 0000000000000000 WA 0 0 32
271 comment PRNGRTTS AAAAAAAANAAAAANA AAAA3AARC

Figure 3: .data and .bss sections

2.3 ELF Segments

2 THE ELF FILE STRUCTURE

We can see in these two sections with objdump -s -j <section> -d cw how data is populated
differently. For .data (Figure 4), we can extract the contents of the globalMessage and secretKey
from the output. Where the secretKey ad de ef be is the little-endian form of 0xDEADBEEF (declared
in line 6 of A). However .bss (Figure 5) will have allocated space for uninitialisedArray and

uninitializedInt but is unpopulated.

[04/01/25]seed@VM:~/.../cw$ objdump -s -j .data -d cw

cw: file format elf64-x86-64

Contents of section .data:
404040
404050 476c6T62 616c206d 65737361 67652068 Global message h
404060 6572652e 00000000 efbeadde ere.........

Disassembly of section .data:

0000000000404040 < data start>:

<__dso_handle>:

50 <globall ge>:
404050: 47 6c 6f 62 61 6c 20 6d 65 73 73 61 67 65 20 68

ge h
404060: 65 72 65 2e 00 00 00 00

0000000000404068 <secretKey>:
404068 ef be ad de

Figure 4: Populated .data

2.3 ELF Segments

Sections divide the ELF file into logically distinct parts such that each section has a specific purpose
and different attributes. Segments are comprised of one or more sections that share similar memory
protections or runtime requirements, these are also commonly known as Program Headers as referred

in Figure 6.

Program Headers:
Type

PHOR

INTERP

LOAD
LOAD

LOAD

DYNAMIC

NOTE

NOTE
GNU_PROPERTY
GNU_EH_FRAME
GNU_STACK

GNU_RELRO

As seen in Figure 6 there are 4 LOAD headers, these indicate PT_LOAD segments that tell the operat-

Global messa

cw: file format elf64-x86-64

Disassembly of section .bss:

0000000000404080 <completed.8061>:

00000000004040a0 <uninitializedInt>:

[04/01/25]seed@VM:~/.../cw$ objdump -s -j

00000000004040¢c0 <uninitializedArray>:

.bss -d cw

Figure 5: Unpopulated .bss

[B4/01/25] seed@VM:~/. .. /cw$ readelf -1 ow

Elf file type is EXEC (Executable file)
Entry point 8x4818b8
There are 13 program headers, starting at offset 64

Offset VirtAddr PhysAddr

FileSiz MemSiz Flags Align
0x0EA000EB0RO6GE40 OxD0B0000E0G400040 Ox000E000O00400040
OxBEBREEDHEEERE2ZHE BxDDDOEDBOREEDEZdE R BxB
Gx0000000000000318 OxDOO000OE06400318 Ox0006000000460318

OxDPBepEREERERRE 1

ExDBBB000000000000
OxDeOpEREEDRRRSER
BxD0BEPEEBE0E01606
BxbBBEDEEBEDERE3ES
BxBEBEREEBEREE2E0E
BxD0B0000000006258
OxDPBODEREEDRR2E10
BxD0BE0EEBEEEEA25C
BxbBBEDEEBEDEE2E20
BxB0B0REEEEREEE1dE
BxD0B0PEEBE0E00338
BxbBBE0EEBEDERRE2E
BxDEBEREEBERRRA35E
BxD0B0000000000044
0xDDBOpEREEDERR33E
BxD0B60E0BE0000620
BxbBBEDEEBEDEE2E9E
BxBEBEREEBERRRRESC
ExDBBB000000000000
BxbBBE0EEBEDEEEE0E
BxBEBEREEBEREA2E10
GGG)

OxD0e0pEoe0REEER1c R Bl

[Requesting program interpreter: /libf4/ld-linux-xB86-64.s50.2]

BxD0B000000D400000 BxDOBOODOEOEI0E00D
0xDDB0DEDE0DEREsEE R Bx1000
BxD0B00EE000401000 BxDOBEEDOEEE401000
BxbBBEDDEEEEEEE3aS R E Bx1660
BxDEBEREEBER4E2000 BxDOBEERAEEEA02E00
GxD0B0DO000REAZ5E R Bx1808
0xDbB0DENEOR4E3e1l Bx0POE00ROEEIR3E10
BxD0B0000000E002TE R Bx1808
BxDBB0DEEB0D403e20 BxDOOBODOOBEI0320
Bx00B0DEEEOREEE1de R 6x8
BxD0BEPEE00D4003358 OxDOE0EDAE0E40033E
BxbBB0DE0BERE0BE2E R BB
BxDEBEREEBER4EB35E BxDOEEERAEEEA0E35E
GxD000D0000DO00R4d R Bxcd
0xDDB0DENEOR4NE33E Bx000E00ROEE4RE33E
GxD0B0DE000REE0E2E R BxB
BxDBBEDEEE0R4E2098 BxDOOBODOEBEI02098
BxDEB0PEEABREEAASC R Bxd
BxD0B000000D00000E BxDOBOODOEOODOEO0D
BxbBBE0EEBEDEEBE0E R Bx10
BxDEBEPEEBER4E3e10 BxDOBEERAEEEAA310
GxDoB0DO0A0RERALTE R Bl

Figure 6: ELF segments

3 SYMBOL TABLE, GOT, PLT

ing system how and where to load portions of the file into memory. We can see the mapping of sections
to segments in Figure 7. Starting from segment 02, this segment contains read-only data structures
needed for dynamic linking and runtime metadata. Segment 03 is mapped as read/executable (R E)
because .text and .plt contain executable instructions. Segment 05 contains sections such as .got,
.data, .bss and are mapped as read/write (RW) because .data and .bss require mutability.

Section to Segment mapping:
segment Sections...

a1 .interp

(i ¥4 .interp .note.gnu.property .note.gnu.build-id .note.ABI-tag .gnu.hash .dynsym .dynstr .gnu.version .gnu.version_r .rela.dyn .rela.plt
83 .imit .plt .plt.sec .text .fini

04 .rodata .eh_frame_hdr .eh_frame

i) .init array .fini array .dynamic .got .got.plt .data .bss

19 dynamic

a7 .note.gnu.property

os .note.gnu.build-id .note.ABI-tag

a9 .note.gnu.property

18 .eh_frame hdr

12 .init array .fini array .dynamic .got

Figure 7: ELF sections mapped to segments

3 Symbol Table, GOT, PLT

3.1 Symbol Table

The command nm cw produces the output in Figure 8 showing the symbol table (containing functions,
global variables, etc.) for the given ELF file cw.

User defined functions and variables appear in the symbol table along with runtime and sys-
tem level symbols. e.g.; main is located at 0x401255 and listed with T to indicate it is defined in
the .text section. secretKey is initialized in .data as indicated by D and is located at 0x404068.
The uppercasing of the symbol indicates their global status and lowercased symbols generally in-
dicated local or non-global symbols of the same sections as their uppercased counterparts. e.g.;
__GLOBAL_OFFSET_TABLE__ is a local symbol in .got which is supported by the indication d.

3.2 Global Offset Table (GOT)

The GOT is a lookup table in the ELF binary that holds addresses of variables and functions. For
library functions to be stored in the ELF, they must be placed in .got.plt which get called via the
PLT stubs. When running the program, the code accesses external symbols through entries in the
GOT, instead of relying on fixed addresses in the instructions because of unpredictable base addresses.

The functions that are dynamically linked will not be addressed during the linking phase and only
resolved when the binary is loaded into memory to be executed. They are identified in the symbol
table in Figure 8 with U for undefined, and listed here in order of appearance;

e gets - used in vulnerableFunction() invoked on line 21 in A.

e __libc_start_main - sets up the runtime environment and passes control over to the main

function (line 31 in A).
e printf - is invoked on lines 14, 20, 22, 27, 28, 43 and 44 in A.
e puts - included by default.
e __stack_chk_fail - included by default.

All of which are part of the GNU C Library loaded via libc.so.6.

3.3 Procedure Linkage Table (PLT)

3 SYMBOL TABLE, GOT, PLT

[B4/081/25] seed@WM:~/.../cw$ nm Cw

000000000040406c B bss start
0000000000404080 b completed.B8861
0000000000404040 D _ data_start
0000000000404040 W data start
00000000004010T0 t deregister tm clones
00000000004010e® T dl relocate static pie
0000000000401160 t do global dtors aux
0000000000403e18 d do global dtors aux fini array entry
0000000000404048 D dso handle
0000000000403e20 d _DYNAMIC
000000000040406c D _edata
0000000000404100 B end
0000000000401398 T fini
00000000004601190 t frame dummy
0000000000403e10 d _ frame dummy init array entry
0000000000402254 r FRAME END

U gets@@GLIBC 2.2.5
000R0EEOEA404058 D globalMessage
0000000000404000 d GLOBAL OFFSET TABLE_

w _ gmon start
0000000000402098 r GNU EH FRAME HDR
00000000E0401196 T greet
0000000000401000 T init
0000000000403e18 d _ init array_end
0000000000403e10 d _ init array start
0000000000402000 R IO stdin used
0000080000401398 T _ libc csu fini
0000080000401320 T _ libc csu init

U libc start main@@GLIBC 2.2.5
0000000000481255 T main

U printf@@GLIBC 2.2.5
000PEEEEEA401219 T printSecretKey

U puts@@GLIBC 2.2.5
0000000000401120 t register tm clones
000000E000404068 D secretKey

U stack chk fail@@GLIBC 2.4
00000000004010b0 T start
0000000000404076 D TMC END
0OPOROEEAO4040cO B uninitializedArray
00000000004040a0 B uninitializedInt
00000000004011ad T vulnerableFunction

Figure 8: Symbol table

3.3 Procedure Linkage Table (PLT)

These ‘undefined’ symbols will have an entry in .plt and corresponding entries in .got.plt so when
the binary makes a call to a library function, it goes through the PLT stub which pushes an identifier
on the stack, jumps to the “resolver” logic and eventually calls the dynamic linker. The dynamic
linker will consult the relocation table to see which function index was pushed and writes the function
address (which may be found in shared libraries) (Figure 9) into the GOT entry associated with that
function. This is only done once upon first call, every subsequent call goes directly to that address
via the PLT stubs, skipping the resolver. This is referred to as lazy binding.

[04/03/25] seed@VM:~/.../cw$ ldd cw
linux-vdso.so.l (0x00007fffae772000)
libc.so.6 => /lib/xB6 64-linux-gnu/libc.so.6 (OxPOOO7f7d0fa%a0d00)
/1ib64/1d-linux-x86-64.50.2 (0x00007f7d0fcalono)

Figure 9: Shared Library Dependencies

In Figure 10, the disassembly of the .plt allows us to view each stub in assembly code. Starting
from 0x401020, pushq places an index on the stack identifying which function is being called. Next,
bnd jmpq goes to the resolver if the function address is not yet filled in, else it directly jumps to the

4 ADDITIONAL ANALYSIS

function. Below, each subsequent 16-byte chunk is another stub for each different function.

[04/03/25]seed@/M:~/.../cw$ objdump -d -j .plt cw

cw: file format elf64-x86-64

Disassembly of section .plt:

0000000000401020 <.plt>:
401020: ff 35 e2 2T 00 60 pushq ©x2fe2(%rip) # 404808 < GLOBAL_OFFSET_TABLE_+8x8>
401026: f2 ff 25 e3 2f 00 00 bnd jmpg *@x2fe3(%rip) # 404010 < GLOBAL OFFSET TABLE_+0x10>
40102d: of 1f ee nopl (srax)
401030: f3 6f 1le fa endbré4
401034: 68 00 00 00 00 pushg $0x0©
401039: f2 e9 el ff ff ff bnd jmpg 401020 <.plt>
40103f: 90 nop
401040: 3 6f 1le fa endbréd
401044: 68 01 00 00 00 pushg $0x1
401049: f2 e9 dl ff ff ff bnd jmpg 401020 <.plt>
40104f: 90 nop
401050 f3 6f le fa endbréd
401054 68 02 00 00 00 pushg $0x2
401059: 2 e9 cl ff ff ff bnd jmpg 401020 <.plt>
40105f: 90 nop
401060: f3 6f le fa endbré4
401064: 68 03 00 60 00 pushg $0x3
401069: f2 e9 bl ff ff ff bnd jmpg 401020 <.plt>
40106f: 90 nop

Figure 10: Disassembly of PLT

4 Additional Analysis

The binary depends on 3 shared libraries as shown above in Figure 9. We know that all the symbols
(in the symbol table in Figure 8) indicated by U belong to 1libc.so.6. The other shared libraries still
need to be included for other reasons. 1d-1inux-x86-64.s0.2 must be included as it is the dynamic
linker used by the PLT. linux-vdso.so.1 is a “virtual dynamic shared object”, its main purpose is
to speed up certain system calls, this is usually included by default and does not correspond to an
actual file on disk.

Running xxd cw returns the raw hex dump of the ELF binary, though it is more convenient to use
tools such as readelf and objdump, xxd may reveal more about the underlying bytes of the file. The
most obvious being the ability to see ASCII strings in plaintext, e.g.; “Global message here.” declared
in line 5 of A is seen at offset 0x3050 (as shown in Figure 11) which we can confirm is located within
.data from the readelf in Figure 3.

WUWL I WAY s UWUY UWYY UYWL WU WY U AW TUYW WUWUY WWWY s s s os s s s s [T R T

00003020: 4010 4000 0000 0000 5010 4000 0000 0060 @.@..... Pl
00003030: 6010 4000 00O OOOO 0OOO QOO0 OOOO OOBO ".@.............
00003040: 0000 COOO 0OOO OO0 QOO OOOO OOOO BOBO
00003050: 476c 662 616c 206d 6573 7361 6765 2068 Global message h
00003060: 6572 652e 0000 0000 efbe adde 4743 433a ere......... GCC:
00003070: 2028 5562 756e 7475 2039 2e34 2e30 2d31 (Ubuntu 9.4.0-1
00003080: 7562 756e 7475 317e 3230 2e30 342e 3229 ubuntul-~20.04.2)
00003090: 2039 2e34 2e30 0000 0000 0000 OOOO BOBO 9.4.0..........

Figure 11: snapshot of hexdump output of .data

As a lower-level check, we can also confirm that the file is indeed in ELF format by the appearance
of the ‘magic numbers’ 7f 45 4c 46 being the first bytes that appear (as shown in Figure 12). If
the file were in another format, there may not be a guarantee that there will be other tools that
can analyse the file with as much ease that readelf and objdump can. A hexdump may be the only
method of analysis and can be crucial in identifying hidden ASCII text.

A CHOSEN C PROGRAM

[04/06/25] seed@VM:~/.../cw$ xxd cw

00000000
00000010:
00000020:
00000030:
00000040
00000050
00000060

7145
0200
4000
o000
0600
4000

4c46
3e00
0000
0000
0000
4000

0201
0160
00060
4000
0400
0000

0100
0000
0000
3800
0000
0000

0000
b010
003b
0doo
4000
4000

0000
0000
0000
100
0000
0000
0000

JELE: sovu i i
- . 0 @.....
(o PR Sars R
s s OB o8 L
........ (- A
(3 [(s AR (2 5 PR,

Figure 12: snapshot of hexdump ELF header

Appendices

A Chosen C Program

#include <stdio.h>
#include <string.h>

/* Global variables (in .data since they are initialized) */
char globalMessage[] = "Global message here.";

int secretKey = OxDEADBEEF;

/* Uninitialized global variables (will be placed in .bss) */

char uninitializedArray[64];

int uninitializedInt;

/* Simple function to demonstrate function pointers */

void greet() {

printf("Hello from greet()!\n");

}

/* Vulnerable function: potential buffer overflow with gets */
void vulnerableFunction() {

char buffer[16];

printf ("Enter a string: ");
gets(buffer); /* Unsafe, used only for demonstration */
printf("You entered: %s\n", buffer);

3

/* Another function that references the global variables */

void printSecretKey()

{

printf ("The secret key is: 0x%X\n", secretKey);
printf("Global message: %s\n", globalMessage);

3

int main() {

/* Function pointer demonstration */
void (*funcPtr)() = greet;

funcPtr();

/* Invoke vulnerable function */
vulnerableFunction();

/* Demonstrate usage of the .bss variables */

A CHOSEN C PROGRAM

strcpy(uninitializedArray, "Populated at runtime (in .bss)");
uninitializedInt = 42;

printf("uninitializedArray: %s\n", uninitializedArray) ;
printf ("uninitializedInt: %d\n", uninitializedInt) ;

/* Print secret key and global message */
printSecretKey () ;

return O;

	Introduction
	The ELF File Structure
	ELF Header
	ELF Sections
	ELF Segments

	Symbol Table, GOT, PLT
	Symbol Table
	Global Offset Table (GOT)
	Procedure Linkage Table (PLT)

	Additional Analysis
	Appendices
	Chosen C Program

