
Ethical Hacking and Pentesting (COM3031) - SEMR 2024/5

Coursework: Part B Report

Pascal Duncan Lek Hou U

April 10, 2025

Contents

1 Introduction 1

2 The ELF File Structure 2
2.1 ELF Header . 2
2.2 ELF Sections . 2
2.3 ELF Segments . 3

3 Symbol Table, GOT, PLT 4
3.1 Symbol Table . 4
3.2 Global Offset Table (GOT) . 4
3.3 Procedure Linkage Table (PLT) . 5

4 Additional Analysis 6

Appendices 7

A Chosen C Program 7

1 Introduction

The C Program chosen for analysis can be found in the appendix of this document. The file is named
‘cw.c’ and was compiled into a binary as ‘cw’ using gcc -o cw cw.c -no-pie.

The structure of the rest of this report is as follows, Section 2 analyses the ELF File’s Structure,
dissecting contents of the ELF header, particular ELF sections and how data is populated within
them. Then, the segments that make up the ELF file and how they differ from sections. Section 3
investigates the content of the symbol table, the functions of the GOT and PLT, and briefly dissect the
disassembly of the PLT. Finally, Section 4 discusses shared library dependencies as shown in Figure
9, and some insights from hexdumps to be gained of the raw ELF file.

1

2 THE ELF FILE STRUCTURE

2 The ELF File Structure

2.1 ELF Header

Running readelf -h cw, we can inspect the header and see that ‘cw’ is an executable file indicated
by EXEC and has target architecture Advanced Micro Devices X86-64. The entry point address is
0x4010b0 (Figure 1).

Figure 1: ELF Header

2.2 ELF Sections

Using readelf -S cw shows the section headers contained in the binary. The .text section contains
the executable instructions for functions in the program, and is marked as executable at runtime
indicated with the X flag. This would include the functions main() (which is the program’s entry
point after runtime setup), greet(), vulnerableFunction(), and printSecretKey() (which are
declared at lines 31, 13, 18, 26 in A). It is addressed at 0x4010b0, has been allocated 0x2e5 bytes in
the binary (Figure 2).

Figure 2: .text section

.data and .bss contain the initialised and uninitialised global and static variables respectively
(Figure 3). From the section header we can see that .data has type PROGBITS meaning it holds actual
bytes in the file. Whereas .bss has type NOBITS, so the loader just reserves the space in memory, and
does not store any bytes in the file.

Figure 3: .data and .bss sections

2

2.3 ELF Segments 2 THE ELF FILE STRUCTURE

We can see in these two sections with objdump -s -j <section> -d cw how data is populated
differently. For .data (Figure 4), we can extract the contents of the globalMessage and secretKey
from the output. Where the secretKey ad de ef be is the little-endian form of 0xDEADBEEF (declared
in line 6 of A). However .bss (Figure 5) will have allocated space for uninitialisedArray and
uninitializedInt but is unpopulated.

Figure 4: Populated .data Figure 5: Unpopulated .bss

2.3 ELF Segments

Sections divide the ELF file into logically distinct parts such that each section has a specific purpose
and different attributes. Segments are comprised of one or more sections that share similar memory
protections or runtime requirements, these are also commonly known as Program Headers as referred
in Figure 6.

Figure 6: ELF segments

As seen in Figure 6 there are 4 LOAD headers, these indicate PT_LOAD segments that tell the operat-

3

3 SYMBOL TABLE, GOT, PLT

ing system how and where to load portions of the file into memory. We can see the mapping of sections
to segments in Figure 7. Starting from segment 02, this segment contains read-only data structures
needed for dynamic linking and runtime metadata. Segment 03 is mapped as read/executable (R E)
because .text and .plt contain executable instructions. Segment 05 contains sections such as .got,
.data, .bss and are mapped as read/write (RW) because .data and .bss require mutability.

Figure 7: ELF sections mapped to segments

3 Symbol Table, GOT, PLT

3.1 Symbol Table

The command nm cw produces the output in Figure 8 showing the symbol table (containing functions,
global variables, etc.) for the given ELF file cw.

User defined functions and variables appear in the symbol table along with runtime and sys-
tem level symbols. e.g.; main is located at 0x401255 and listed with T to indicate it is defined in
the .text section. secretKey is initialized in .data as indicated by D and is located at 0x404068.
The uppercasing of the symbol indicates their global status and lowercased symbols generally in-
dicated local or non-global symbols of the same sections as their uppercased counterparts. e.g.;
__GLOBAL_OFFSET_TABLE__ is a local symbol in .got which is supported by the indication d.

3.2 Global Offset Table (GOT)

The GOT is a lookup table in the ELF binary that holds addresses of variables and functions. For
library functions to be stored in the ELF, they must be placed in .got.plt which get called via the
PLT stubs. When running the program, the code accesses external symbols through entries in the
GOT, instead of relying on fixed addresses in the instructions because of unpredictable base addresses.

The functions that are dynamically linked will not be addressed during the linking phase and only
resolved when the binary is loaded into memory to be executed. They are identified in the symbol
table in Figure 8 with U for undefined, and listed here in order of appearance;

• gets - used in vulnerableFunction() invoked on line 21 in A.

• __libc_start_main - sets up the runtime environment and passes control over to the main
function (line 31 in A).

• printf - is invoked on lines 14, 20, 22, 27, 28, 43 and 44 in A.

• puts - included by default.

• __stack_chk_fail - included by default.

All of which are part of the GNU C Library loaded via libc.so.6.

4

3.3 Procedure Linkage Table (PLT) 3 SYMBOL TABLE, GOT, PLT

Figure 8: Symbol table

3.3 Procedure Linkage Table (PLT)

These ‘undefined’ symbols will have an entry in .plt and corresponding entries in .got.plt so when
the binary makes a call to a library function, it goes through the PLT stub which pushes an identifier
on the stack, jumps to the “resolver” logic and eventually calls the dynamic linker. The dynamic
linker will consult the relocation table to see which function index was pushed and writes the function
address (which may be found in shared libraries) (Figure 9) into the GOT entry associated with that
function. This is only done once upon first call, every subsequent call goes directly to that address
via the PLT stubs, skipping the resolver. This is referred to as lazy binding.

Figure 9: Shared Library Dependencies

In Figure 10, the disassembly of the .plt allows us to view each stub in assembly code. Starting
from 0x401020, pushq places an index on the stack identifying which function is being called. Next,
bnd jmpq goes to the resolver if the function address is not yet filled in, else it directly jumps to the

5

4 ADDITIONAL ANALYSIS

function. Below, each subsequent 16-byte chunk is another stub for each different function.

Figure 10: Disassembly of PLT

4 Additional Analysis

The binary depends on 3 shared libraries as shown above in Figure 9. We know that all the symbols
(in the symbol table in Figure 8) indicated by U belong to libc.so.6. The other shared libraries still
need to be included for other reasons. ld-linux-x86-64.so.2 must be included as it is the dynamic
linker used by the PLT. linux-vdso.so.1 is a “virtual dynamic shared object”, its main purpose is
to speed up certain system calls, this is usually included by default and does not correspond to an
actual file on disk.

Running xxd cw returns the raw hex dump of the ELF binary, though it is more convenient to use
tools such as readelf and objdump, xxd may reveal more about the underlying bytes of the file. The
most obvious being the ability to see ASCII strings in plaintext, e.g.; “Global message here.” declared
in line 5 of A is seen at offset 0x3050 (as shown in Figure 11) which we can confirm is located within
.data from the readelf in Figure 3.

Figure 11: snapshot of hexdump output of .data

As a lower-level check, we can also confirm that the file is indeed in ELF format by the appearance
of the ‘magic numbers’ 7f 45 4c 46 being the first bytes that appear (as shown in Figure 12). If
the file were in another format, there may not be a guarantee that there will be other tools that
can analyse the file with as much ease that readelf and objdump can. A hexdump may be the only
method of analysis and can be crucial in identifying hidden ASCII text.

6

A CHOSEN C PROGRAM

Figure 12: snapshot of hexdump ELF header

Appendices

A Chosen C Program

1 #include <stdio.h>

2 #include <string.h>

3

4 /* Global variables (in .data since they are initialized) */

5 char globalMessage[] = "Global message here.";

6 int secretKey = 0xDEADBEEF;

7

8 /* Uninitialized global variables (will be placed in .bss) */

9 char uninitializedArray[64];

10 int uninitializedInt;

11

12 /* Simple function to demonstrate function pointers */

13 void greet() {

14 printf("Hello from greet()!\n");

15 }

16

17 /* Vulnerable function: potential buffer overflow with gets */

18 void vulnerableFunction() {

19 char buffer[16];

20 printf("Enter a string: ");

21 gets(buffer); /* Unsafe, used only for demonstration */

22 printf("You entered: %s\n", buffer);

23 }

24

25 /* Another function that references the global variables */

26 void printSecretKey() {

27 printf("The secret key is: 0x%X\n", secretKey);

28 printf("Global message: %s\n", globalMessage);

29 }

30

31 int main() {

32 /* Function pointer demonstration */

33 void (*funcPtr)() = greet;

34 funcPtr();

35

36 /* Invoke vulnerable function */

37 vulnerableFunction();

38

39 /* Demonstrate usage of the .bss variables */

7

A CHOSEN C PROGRAM

40 strcpy(uninitializedArray, "Populated at runtime (in .bss)");

41 uninitializedInt = 42;

42

43 printf("uninitializedArray: %s\n", uninitializedArray);

44 printf("uninitializedInt: %d\n", uninitializedInt);

45

46 /* Print secret key and global message */

47 printSecretKey();

48

49 return 0;

50 }

8

	Introduction
	The ELF File Structure
	ELF Header
	ELF Sections
	ELF Segments

	Symbol Table, GOT, PLT
	Symbol Table
	Global Offset Table (GOT)
	Procedure Linkage Table (PLT)

	Additional Analysis
	Appendices
	Chosen C Program

