
Revision Notes for COM3030: Privacy Enhancing
Technologies 2024/25

Pascal U

University of Surrey

Abstract. Revision notes covering weeks 7 through 10. Covering all
topics as presented in lectures, going into further detail as needed and
ignoring some sections if not essential. Some (potentially many) parts
could be wrong in detail, but certainly not for a lack of trying to under-
stand the concepts deeply.

1 Week 7: Secure Messaging

1.1 Security of Encryption Schemes

IND-CPA Security The adversary chooses two plaintext, one of them is en-
crypted, and they cannot query a decryption oracle.

– The adversary A chooses two plaintexts. One of them is encrypted, and the
adversary cannot query a decryption oracle.

– The challenger runs (pk, sk)← KeyGen(λ).
– A submits two plaintexts m0 and m1.
– The challenger picks a random bit b ∈ {0, 1} and encrypts mb to obtain

c← Enc(pk,mb).
– A receives the ciphertext c.
– A guesses b′.
– If A is unable to distinguish b with a non-negligible advantage over random

guessing (50% chance), the encryption scheme is considered IND-CPA se-
cure.

Pr[b′ = b]− 1

2
≈ 0,

IND-CCA Security A stronger security requirement whereby adversary is
able to query a decryption oracle.

– The challenger runs (pk, sk)← KeyGen(λ).
– The adversary A submits two plaintexts m0 and m1.
– The challenger picks a random bit b ∈ {0, 1} and encrypts mb to obtain

c∗ ← Enc(pk,mb).
– A receives the ciphertext c∗.
– A is granted access to a decryption oracle Dec(sk, ∗), which decrypts any

ciphertext c ̸= c∗.

2 U. Pascal

– A guesses b′.
– If A is unable to distinguish b with a non-negligible advantage over random

guessing (50% chance), the encryption scheme is considered IND-CCA se-
cure.

Pr[b′ = b]− 1

2
≈ 0,

1.2 Digital Signatures

– KeyGen: Takes input λ (security parameter) and outputs a key pair (sk, vk).
– Sign: Takes input message m, a signing key sk, and outputs a signature σ.
– Verify: Takes signature σ, a verification key vk, a message m, and outputs

1 (if valid) or 0 (if invalid).

Forgery Security

– Universal Unforgeability (UUF): The adversary is able to create a forged
signature on a given random message.

– Selective Unforgeability (SUF): The adversary is able to create a forged
signature on a message they choose before the attack.

– Existential Unforgeability (EUF): The adversary is able to create a
forged signature on any message they choose, provided it hasn’t been signed
by the legitimate signer.

Attack Security

– Key Only Attack (KOA): The adversary knows the verification key, but
nothing else.

– Known Message Attack (KMA): The adversary knows the verification
key and some signatures on messages for which it knows the content but
hasn’t chosen.

– Chosen Message Attack (CMA): The adversary knows the verification
key and can obtain the signature on any set of messages it chooses.

EUF-CMA

– The adversary A can make queries to a signing oracle. For each message m,
A can request a signature σ ← Sign(sk,m). (Satisfies CMA)

– After querying for signatures on any number of messages, A must output a
new message m′ and a signature σ′.

– A forgery is considered valid if:

Verify(pk,m′, σ′) = 1

(Satisfies EUF if m′ /∈ all queried m)

Revision Notes for COM3030: Privacy Enhancing Technologies 2024/25 3

1.3 Encryption Methods and Protocols for Data Transit

Authenticated Encryption with Associated Data (AEAD) Scheme

– KeyGen: Takes input λ (security parameter) and outputs a key pair (sk, pk).
– Encrypt: Takes input a message m, a header hdr, and a public key pk, and

outputs a ciphertext c and a tag µ.
– Decrypt: Takes input a ciphertext c, a header hdr, and a secret key sk, and

outputs a message m if and only if sk is correct and µ verifies. Otherwise, it
outputs an error.

An AEAD scheme is secure if it offers both IND-CCA and EUF-CMA security.

Key Derivation Function (KDF)

– KDF(seed, l, salt, c): A deterministic algorithm that takes as input a
seed, output length l, a salt, and a context variable c. The salt and context
variable are optional and are usually ignored. The output is a cryptographic
key k.

– Security Properties: A KDF is secure if an attacker, with knowledge of a
key k (and the context and output length), cannot recover the seed (or the
salt).

KDF Chains The output of one KDF function is the input to the next KDF
function in the chain.

Fig. 1. KDF Chain

– Seeds are used only as KDF keys and are deleted after use.
– KDF inputs can be constant or change, as this does not impact key secrecy.
– All AEAD operations are performed using only derived keys ki.
– If the adversary learns si or ki, they cannot compute previous seeds/keys

(forward secrecy). However, this does not protect against post-compromise
security.

4 U. Pascal

Symmetric Key Ratchet with KDF Chains Given two participants, Alice
and Bob maintain different KDF chains for:

1. Sending: Encrypting outgoing messages, where Alice’s sending chain =
Bob’s receiving chain.

2. Receiving: Decrypting incoming messages, where Alice’s receiving chain =
Bob’s sending chain.

The Double Ratchet System Provides forward secrecy by ongoing renewal
and maintenance of short-lived session keys. Through combination of two Sym-
metric Key Ratchets and a Public Key Ratchet for each participant.

Fig. 2. KDF Chain

– KDF: Used for Symmetric Key Ratcheting.
– Diffie-Hellman: Used for Public Key Ratcheting.

Out-of-order messages are handled by a separate algorithm:

– Variables:
• N : Message counter in the current sending chain.
• P : Length of the previous sending chain.

– Algorithm:
1. If a received message does not cause a PK ratchet:
• The number of messages missed in the current receive chain is:

Missed Messages = N − length(receive).

2. Else, if a PK ratchet occurs:

Revision Notes for COM3030: Privacy Enhancing Technologies 2024/25 5

• The number of messages missed in the current receive chain is:

Missed Messages = P − length(receive).

3. Derive all the missing keys.
4. Decrypt the message m, but store the skipped keys for later use.

Trust in server infrastructure is required because;

– Server can drop messages (i.e. DoS).
– Server can deliberately delay messages to make users store secret keys longer

than required.
– Server may accumulate messages with the goal to compromise them later.
– Replace (sk, pk) of some user to impersonate them by creating pre-key bun-

dles with prei = (i, pki, σi) (mitigated by physical or out-of-band verifica-
tion).

Authenticated Key Exchange (AKE) Diffie Hellman (DH)

– take a generator g of a finite group with order p
– Alice samples her key pairs as (skA, pkA) = (a,A = ga)
– Bob samples his key pairs as (skB , pkB) = (b, B = gb)
– Consider a shared key gab

• Alice can compute this as

(pkB)
skA = (B)a

• Bob can compute this as

(pkA)
skB = (A)b

X3DH AKE protocol The handshake protocol used in Signal’s E2EE mes-
saging that relies on DH keys and provides deniability.

Fig. 3. X3DH handshake

– Initial Setup:
• Alice and Bob each generate long-term and ephemeral key pairs (public

and private)

6 U. Pascal

– Exchange of Public Keys:
• Alice sends Bob: epkA, pkA
• Bob sends Alice: epkB , pkB

– Key Agreement(DH Exchanges) The shared secret is computed using:
• DH1: Alice Computes DH(eskA, pkB)
• DH2: Bob Computes DH(eskB , pkA)
• DH3: Alice Computes DH(skA, epkB)

– Shared Secret Derivation:

shared_secret = HKDF(DH1∥DH2∥DH3)

– Session Key Agreement:
• Using shared_secret, Alice and Bob derive the session keys they will use

to encrypt and decrypt messages in their communication.
• The way this is done is not too important as long as they are consistent

and secure on both ends.

1.4 Privacy and Security properties of the Signal Protocol

Post-Compromise Security of the Signal Protocol Key rotation, in com-
bination with the symmetric ratchet, ensures that even if a key is compromised,
future messages are protected by new keys.

– Ephemeral Keys:
• Ratcheted regularly, therefore compromised keys cannot derivate future

keys without access to Long-Term Secret Key.
– Session Keys:
• Remember from KDF Chains that if the ith key is compromised, past

keys cannot be derived.
• Therefore prior communication is still safe.

– Long-Term Keys:
• If compromised, attacker may impersonate user, but cannot immediately

decrypt messages due to ephemeral keys.

Deniability with AKE Any two users could have generated the protocol
because the shared DH key can be individually generated by either party. This
is known as Offline Deniability. Online deniability is not yet achieved in
the described protocol. Because ephemeral keys must match for the message to
be authenticated.

Revision Notes for COM3030: Privacy Enhancing Technologies 2024/25 7

2 Week 8: Private Function Evaluation

2.1 Group Messaging and Open MLS

Messaging Layer Security (MLS) Is an approach at standardizing a solu-
tion to secure group messaging, at the core of MLS is the TreeKEM protocol.
TreeKEM continuously generates fresh, shared, and secret randomness used by
participants to evolve the group key. Each new group key is used to initiate a
fresh symmetric hash ratchet that defines a streeam of nonce/key pairs used to
symmetrically encrypt/decrypt messages using an AEAD. a stream is used until
the next evolution of the group key at which point a new stream is initiated.

Group Creation with TreeKEM

Root

Node1

U0 U1

Node2

U2 U3

– Given a group of users, e.g.; G = (U0, U1, U2, U3)
– a ratchet tree (RT) is first created with the use of a Public Key Encryption

Scheme (PKE), each user creates a key pair (pki, ski) corresponding to their
respective identity Ui.

– Creator U0 arranges members into a binary tree as above.
– Node1 derives a shared secret between U0 and U1 by a Key Encapsulation

Mechanism (KEM) that combines their respective public keys pk0 and pk1.
– The shared_secret can be calculated with a PKE such as Diffie-Hellman,

etc.
– The shared_secret is ratcheted with additional metadata (e.g. U0, U1) with

a KDF

Node1 = KDF(shared_secret0,1∥U0∥U1)

– The same process occurs at Node2 (with U2, U3), and at Root (with Node1,
Node2).

– All members may communicate with each other using the shared key at root.

8 U. Pascal

Adding a member to the Tree

New_Root

Old_Root

Node1

U0 U1

Node2

U2 U3

Node3

U4

– a New_Root is added to the tree along with Node3.
– U4 determines their key pair (sk4, pk4).
– Node3 is derived by

secret4 = DH(pk4)

Node3 = KDF(secret4∥U4)

– New_Root is derived by

shared_secret0,...,4 = DH(shared_secret0,...,3, secret4)

New_Root = KDF(shared_secret0,...,4)∥Old_Root∥Node3)

Removing a member from the Tree Say we need to remove U3 from the
above tree.

– The affected subtree nodes would be Old_Root and Node2.
– All nodes along the path to the root of the subtree must be rekeyed.
– Each affected node computes a new secret/shared_secret which excludes

U3’s involvement.

Conflicting Updates Inherently the TreeKEM structure is asynchronous, all
members must have the same model of the overall structure, otherwise will result
in failure of the encryption scheme (Key State Divergence).

There are several ways of handlign Conflicting Updates. Described in the
lecture, updi is sent to the server as a proposed update. No user is allowed an
update until the server sends back a corresponding acki in the next epoch.

The following selection policies may be used:

Revision Notes for COM3030: Privacy Enhancing Technologies 2024/25 9

1. Server picks one updi and rejects all other updates.
2. Server delivers all updi in the same order. Users execute updates in the

received order.
3. Server delivers all updi without ordering. Users execute updates based on a

policy, e.g. left-most user‘s first.

2.2 Private Function Evaluation

ElGamal Encryption Scheme uses a base group G, with generator g and order
q. Encrypts a message m ∈ G.

KeyGen:

1. Sample x from 1, ..., q − 1
2. Set sk ← x and pk = h← gx

3. Output (sk, pk)

Encrypt: Takes input m, pk

1. sample s from 0, ..., q − 1
2. t← pks

3. c1 = gs

4. c2 = m · t
5. Output (c1, c2)

Decrypt: Takes input (c1, c2), sk

1. s← cx1
2. m = c2 · s−1

3. Output m

Exponential ElGamal Message m ∈ Z∗
p. Uses the same key generation but

deviates slightly in encryption and decryption methods.

Encrypt:

– c2 = gm · t

Decrypt:

– gm = c2 · s−1

– Output m (calculated from log(gm)/log(g))

10 U. Pascal

Homomorphic Properties of ElGamal and Exp-ElGamal Encrypted ci-
phertexts using ElGamal can be homomorphically multiplied with each other.
While, ciphertexts in Exp-ElGamal can be homomorphically added with each
other. Individually, both of these can be classified as Partially Homomorphic
Encryption Schemes, because they exhibit partially but not completely, features
of Fully Homomorphic Encryption.

Multiplication with ElGamal: Given sk = x, pk = gx = h:

– Ciphertexts:
c(A) = (c

(A)
1 , c

(A)
2), c(B) = (c

(B)
1 , c

(B)
2)

– Multiplication of ciphertexts:

c = c(A) ⊠ c(B) = (c
(A)
1 × c

(B)
1 , c

(A)
2 × c

(B)
2)

– Decryption:
m = Dec(sk, c) = m1 ·m2

Addition with Exp-ElGamal: Given sk = x, pk = gx = h:

– Ciphertexts:
c(A) = (c

(A)
1 , c

(A)
2), c(B) = (c

(B)
1 , c

(B)
2)

– Addition of ciphertexts:

c = c(A) ⊞ c(B) = (c
(A)
1 × c

(B)
1 , c

(A)
2 × c

(B)
2)

– Decryption:
m = Dec(sk, c) = m1 +m2

Revision Notes for COM3030: Privacy Enhancing Technologies 2024/25 11

Lattices (you will not have to know this explicitly for the exam)

– For linearly independent vectors (v1, ..., vn) in Rn

lattice Λ = a1v1 + ...+ anvn|ai ∈ Z

– Λ is a discrete additive subgroup of Rn.
– (v1, ..., vn) is called a basis which generates Λ.
– For vector v = (v1, v2) its length ∥v∥ =

√
(v21 + v22).

Fig. 4. lattice structure in R2 space

Shortest Vector Problems in Λ

– SVP: Find a short (non-zero) vector s in Λ
– γ-SVP: Find a short vector of length γ(n) · ∥s∥, γ(n) ≥ 1
– GapSVPγ(d): Distinguish whether ∥s∥ ≤ d or ∥s∥ ≥ γ(n) · d. (is reducible

to a LWE problem)

Learning With Errors (LWE) A computational problem involving a system
of noisy linear equations over finite fields. Essentially, given a collection of noisy
linear equations, can you recover the original secret that define the equations?

Problem:

– Let s ∈ Zn
q be a secret vector, an odd modulus q ∈ N

– Oracle OLWE(s):
• pick vector a ∈ Zn

q

• picks a small noise term e ∈ Z from a noise distribution
• outputs b = ⟨a, s⟩+ e mod q. where;

∗ ⟨a, s⟩ is the dot product of a and s
∗ e is the noise
∗ mod q ensures the result stays within the finite field

– security from difficulty in finding s from polynomially many (a, b)

12 U. Pascal

Peikert Public Key Encryption based on LWE

KeyGen:

1. sk = s ∈R Rq

2. pk = (a, b) where b = as+ e

Enc(pk, x ∈ 0, 1):

1. pick random s′, e′, e′′ from noise distribution X
2. c0 = s′a+ e′

3. c1 = s′b+ e′′ + encode(x)

encode(x) = x · [q/2]

4. return c = (c0, c1)

Dec(sk, c):

1. ẍ = c1 − c0s
2. return decode(ẍ)

decode(ẍ ∈ Zq) =

{
0 if ẍ ∈ [−⌊q/4⌋, ⌊q/4⌋)
1 otherwise

The correctness of Peikert LWE-PKE is since due to s′b+ e′′ = s′(as+ e)+ e′′ =
s′as + s′e + e′′ ≈ s′as, we get c1 ≈ s′as + encode(x). Simultaneously, since
c0s = (s′a+ e′)s = s′as+ e′s ≈ s′as. We get ẍ = c1 − c0s = encode(x).

2.3 Fully Homomorphic Encryption (FHE)

Fig. 5. correctness of FHE scheme

FHE allows the evaluation of arbitrary circuits composed of (+,×)-gates
of unbounded depth. HE schemes with bounded depth are defined as Leveled
Fully Homomorphic Encryption. And partially homomorphic encryption
schemes are described above in Homomorphic Properties of ElGamal and
Exp-ElGamal.

Revision Notes for COM3030: Privacy Enhancing Technologies 2024/25 13

Components of FHE algorithms All FHE schemes have the 3 fundamental
components of a PKE scheme and an evaluation function. Eval() is where (⊞,⊠)
actions are applied to the given ciphertexts.

– KeyGen(K): generates key pair (sk, pk)
– Enc(pk,m): encrypts m with pk and outputs c
– Dec(sk, c): Decrypts c using sk and outputs either m or error
– Eval(pk, f, c1, ..., cn): outputs c′ that encrypts f(m1, ...,mn).

No IND-CCA security in FHE The key feature of FHE is the malleability of
ciphertexts. (including ElGamal and all other PHE schemes) By definition, IND-
CCA cannot be achieved because the oracle must leak some information which
the attacker can use to predict related plaintexts. (e.g., attacker chooses m0, m1,
challenger encrypts one of them as c, the attacker calculates (c ⊠ Enc(m0)

−1)
and if the result equals 1, the challenger chose m0, otherwise it is m1.) 1

Bootstrapping The key concept for all FHE schemes today require some form
of noise being introduced. The issue with this is that when ⊠,⊞ operations are
used, the noise can grow to untenable levels (especially with ⊠). The solution
introduced by Gentry in 2009 was Bootstrapping, which would reduce the noise
to a fixed manageable level whenever needed.

The idea is performing a decryption within the evaluation function by en-
crypting the secret key, thereby performing decryption in the ciphertext space.
Basic decryption circuits only perform the decryption for the sole purpose of
reducing noise. Augmented decryption circuits perform the decryption during
homomorphic evaluation (⊞,⊠).

Notably, There is still a relationship between sk and pk. However, there is
no evidence so far whether this impacts the security of this scheme or not. This
circular security may be avoided by using chain-key switching, which uses d
different key pairs where d is the length of the chain. However, this limits the
number of evaluations to (d− 1) therefore schemes that utilize this can only be
classified as levelled-FHE schemes instead of fully FHE.

Key switching however has the added benefit of extending single-hop SWHE
to multi-hop SWHE with n < d hops.

1 IND-CPA can be achieved because even when the attacker is able to manipulate
the contents of ciphertexts, using the attack above without the decryption oracle,
he cannot tell whether that ciphertext corresponds to 1 or not.

14 U. Pascal

3 Week 9: Privacy Preserving Machine Learning

The usefulness for protecting privacy of groups and individiduals is obvious. Sen-
sitive, military, medical and financial private data cannot be stored unsecurely
and cannot be disclosed with or without discretion. However, with techniques
such as;

– Differential Privacy
– Homomorphic Encryption
– Multi-Party Computation
– Federated Learning

Processing and evaluating private data can be done without ever revealing the
contents of that data.

3.1 Homomorphic Encryption: CryptoNets FHE

Algorithms

– KeyGen(λ) : returns key pair (sk, pk) and bootstrap key bsk
– Encrypt(pk,m) : returns ciphertext c
– Decrypt(sk, c) : returns message m
– Eval(f, {c}) : (potentially many) c, returns f({c})
– Bootstrap(bsk, c) : takes input ’old’ c, key bsk, returns c′

Some Parameters and Variables:

Ring Rt = Zt[x]/(x
n + 1)

Ring Rq = Zq[x]/(x
n + 1)

polynomials f ′, g ∈R Rn
q

c1 = ([q/t]m1 + e1 + hs1) mod q

c2 = ([q/t]m2 + e2 + hs2) mod q

Homomorphic Addition where m3 = m1 +m2

c1 + c2 = ([q/t](m1 +m2) + (e1 + e2) + h(s1 + s2)) mod q

= ([q/t]m3 + e3 + hs3) mod q

This has the same shape as a normal ciphertext and will decrypt to m1 +m2,
provided e3 is small enough.

Homomorphic Multiplication where m3 = m1 ×m2

(q/t)(c1 × c2) = ([q/t](m1m2) + (e1e2) + h2(s1s2)) mod q

= ([q/t]m1m2 + e′ + h2s1s2) mod q

This has the same shape as a normal ciphertext and will decrypt to m1m2 if e′
is small enough. The secret key must match the shape of the public key h here
so is now squared. (sk = f2)

Revision Notes for COM3030: Privacy Enhancing Technologies 2024/25 15

Scalar Operations Not all operations require encryption. e.g., weights in NNs
are known to the network, therefore there’s no need for their encryption.

Scalar Addition: with weight w

c+ [q/t]w = ([q/t](w +m) + e+ hs) mod q

Essentially just encrypting w with no noise and performing normal homomorphic
addition.

Scalar Multiplication: with weight w

c× w = ([q/t]wm+ e′ + hs′) mod q

This is very efficient, especially if w is sparse.

Practical Considerations The maximum noise that a ciphertext can have
and still be decryptable depends on q and t. Therefore q should be selected to
be large enough to accommodate the increasing noise, which then necessitates
choosing a larger n for security reasons.

Keeping parameters small may improve performance for these tasks, however
we would like to make t large to prevent coefficients of the plaintext polynomials
from reducing mod t at any point during the computation. This is especially
problematic for NNs where we have to encode inputs.

Parameter Selection and Amortisation Parameters t1, t2 are plaintext
moduli chosen so their product is greater than 280 (large enough for most NNs).
But small enough so that coefficient modulus q = 2383− 233 +1 and polynomial
modulus (xn+1) = x8192+1 allow so that the noise does not grow too large. The
plaintext moduli are chosen such that the polynomial modulus breaks into linear
components which allow for optimal use of SIMD (Allowing the same message
to contain 8192 images instead of just 1). Which poses a different challenge as
now it requires data to fit neatly into batches of n (8192 images).

The Activation Function FHE can only compute Addition and Multiplica-
tion. In the CryptoNets scheme there are no ways of FHE to compute non-linear
functions, such as most activation functions. Therefore a new activation function
that can be modelled from ⊞,⊠ functions.

The Square Activation Function:

f(x) = x2

This function exhibits strange behaviour in that, unlike ReLU and Sigmoid, the
derivative of the Square is that its derivative is unbounded and can make weights
’blow up’ or overfit.

16 U. Pascal

In CryptoNets, the final layer must still be a Sigmoid Activation Function
to achieve reasonable error terms when gradient descent is applied. However
because the sigmoid function is monotone increasing, this can be left out of
training after all weights have optimised, where it can be done in plaintext
space.

3.2 Torus FHE

Algorithms

– KeyGen(λ) : returns key pair (sk, pk) and bootstrap key bsk
– Encrypt(pk,m) : returns ciphertext c
– Decrypt(sk, c) : returns message m
– Eval(f, {c}) : (potentially many) c, returns f({c})
– ProgBootstrap(bsk, c, g) : takes input ’old’ c, key bsk, an optional small-

function g, returns c′

Programmable Bootstrapping As with bootstrapping, PBS resets the noise
value to a manageable state by decrypting the ciphertext in the encrypted do-
main.

Simultaneously, it allows the ability to compute an arbitrary function g over
the ciphertext c, provided it can be encoded as a small lookup table. Meaning,
function such as ReLU and Sigmoid can be directly implemented within the FHE
framework, over a small domain as part of bootstrapping.

PBS introduces a new global parameter that controls exactness. With prob-
ability p, the PBS lookup will return the wrong entry from the lookup table.

smaller p⇒ larger parameters⇒ less efficient

The error distribution is normal, centred on the correct value. So if it returns a
wrong answer, it probably isn’t too far away.

Encoding Problems ML models and algorithms typically use floating-point
arithmetic to approximate real numbers. TFHE can only work over integers. A
method is needed to translate these values.

Quantisation Quantisation is the process of constraining an input from a con-
tinuous or otherwise large set of values (such as real numbers) to a discrete set
(such as integers).

Some accuracy in representation is lost as usually the least-significant bits
are eliminated. In many cases, for ML it is possible to adapt the models to
give meaningful results while using these smaller data types. Which significantly
reduces the number of bits necessary for intermediary results during execution.
(TFHE currently is limited to 16-bit integers)

Revision Notes for COM3030: Privacy Enhancing Technologies 2024/25 17

Quantising R to Z space. Let [α, β] be the range to quantise, n = 8 be the
number of bit integers.

S =
β − α

2n − 1
=

β − α

28 − 1
=

β − α

255

S is the scale parameterised by n. The range is [0, 255].
To make quantisation computations hardware-friendly, ensure that scales are

in powers-of-two. This allows division and multiplication by 2 to be computed
by shift operations.

Quantisation Aware Training (QAT) Let n be the bit-width of the inputs,
and nbits denote the bit-width of the weights.

Linear models only do quantisation post-training. The model is trained in
floating point, then the best integer weight representations are found, depending
on the distribution of inputs and weights.

Tree-based models need training and test data to both be quantised. the
value of nbits bits is known beforehand (nbits = n+ 1 bits).

For NNs, the bit-width cannot be precisely controlled. For better model ac-
curacy, it is beneficial to have many input features and a high number of bits.
But this drastically hinders performance, a desirable compromise in both can
only be found through experimentation.

18 U. Pascal

4 Week 10: Privacy Preserving Machine Learning cont.

Turning training data into a good model is not necessarily one-way. How does
the model come to the correct conclusion about new and unseen data? Clearly,
in order to be able to identify and map features to labels, the model needs to
extract information from training.

Therefore, this probably does pose some form of privacy issue. Because it al-
lows someone with access to the model to deduce information about the training
data.

4.1 Training Privacy Attacks

Querying the model inherently leaks knowledge about the training set. The prob-
lem is how can you distinguish between honest and adversarial queries?

Membership Inference Models tend to perform better on data they are
trained on. Given a set that includes data used in training, an adversary is
able to infer which examples were used in training by their performance.

The adversary does not even need to have knowledge of about the parameters
of the model. Just the algorithm and architecture.

Model Inversion The ability of an attacker to reconstruct the input data used
to train the model. This also requires the use of querying.

Fig. 6. left: reconstruction from adversarial queries, right: original training datum

4.2 Differential Privacy

To protect against these attacks, two approaches can be utilised. First, adding
noise to the outputs. Or second, adding noise to the inputs (and/or to the model)

Adding Moise Blurs the true value of training updates. This should be done
carefully so that the noise is small enough that the parameters still remain
approximately correct. But should be large enough that reverse engineering data
is not possible.

One Concern: Sure, it is differentially private for 1 update for 1 data sample.
But training a model uses many data samples and many updates.

Revision Notes for COM3030: Privacy Enhancing Technologies 2024/25 19

Amplification Theorem For a dataset |D| with sample size |L|, define |D|
|L| .

Theorem 1 (Amplification Theorem). If an update △θ is (ε, δ)-Differential
Private within a sample, then it is (O(qε), qδ)-Differential Private within the
dataset.

So one update for all data is differentially private.

Composition Theorem
Theorem 2 (Composition Theorem). Applying a (ε1, δ1)-Differential Pri-
vate algorithm, then a (ε2, δ2)-Differential Private algorithm, gives a (ε1+ε2, δ1+
δ2)-Differential Private algorithm.

Many updates for all data is differentially private.
Theorem 3 (Strong Composition Theorem). Applying the same (ε, δ)-
Differential Private algorithm T times gives a Differential Private algorithm with
parameters:

(O(ε
√

T ln(1/δ)), T δ)

4.3 Federated Learning

A machine learning setting where multiple entities (clients) collaborate in solving
a machine learning problem, under the coordination of a central server or service
provider. Each client’s raw data is stored locally and not exchanged or trans-
ferred; instead focused updates intended for immediate aggregation are used to
achieve the learning objective.

Security Concerns:

1. Data must remain private to the organisation that owns it.
2. Individual Models remain private to the organisation that created it.
3. The combined model does not break 1 or 2.

Averaging Federated averaging averages the results of models from each client.
The clients each perform training and have a local dataset. The server responsible
for aggregating weights does not necessarily needed to be powerful.

The model is first initialized on the server. At each round t, a random set of
clients are chosen and each client performs local gradient descent steps, and the
server aggregates model parameters submitted by the clients.

Cross-Device This FL process involves large number of devices, such as smart-
phones and IoT devices that participate in training a global model collabora-
tively.

The scale of CDFL can be much larger than CSFL, participants do not
necessarily have large computational power and do not need to contribute large
amounts of data.

Data is unique to each device and varies significantly between participants
(Highly Non-IID).

20 U. Pascal

Cross-Silo CSFL involves smaller number of organisations (silos). This is used
for medical, financial or corporate institutions that collaborate to produce global
models while keeping their data private.

The scale is usually much smaller than CDFL and usually participants require
substantial computational resources as they need to compute their own large
datasets. Data distribution is usually moderately Non-IID.

Challenges of FL

– Data Heterogeneity: Data generated by each user can be very different (for-
mat, type, etc.)

– Unbalanced Data: Some users produce more data than others
– Limited Communication: Unstable Mobile Networks (affects CSFL more)
– Hardware Heterogeneity: Potentially extreme ranges of compute and memory

of devices
– Privacy, Security and Trust: Malicious Clients and Servers

4.4 Secure Aggregation

Consider that every participant is an adversary, and that their goal is to learn ev-
erything about every other participants data (such as financial or capital firms).
Secure Aggregation is the concept of ensuring the privacy of participants data
while enabling the computation of a global model.

Federated Learning Participants apply techniques such as adding noise to
their data and model, while the server, when summing each participants models,
simultaneously applies a mask. When all parts are aggregated, the sum of the
masks will cancel out.

This all assumes however that the server is to be trusted. What if that were
not the case?

Homomorphic Encryption Say client c1 and client c2 want to aggregate their
models. c1 encrypts their model as up1 with a Homomorphic PKE scheme and
sends that to c2. c2 does the same, creates up2 and adds it to up1. The server
can only learn up1 + up2 but not know their contents individually.

– Even against a honest but curious server, the client models remain IND-CPA
secure.

– Sequential ordering means any drop out invalidates the entire process
– No way of parallelisation
– A single malicious client can invalidate the whole sequence, and in tandem

with the server may break privacy of other models.

Revision Notes for COM3030: Privacy Enhancing Technologies 2024/25 21

Multi Party Computation Devices cooperate to sample random vector pairs
of 0-sum perturbation vectors, which cancel out during aggregation.

Each user computes a secret update vector wi they want to contribute to
the global model. Each pair (i, j) needs to compute a shared secret si,j . Denote
s+i,j = si,j and s−i,j = −si,j

Each party computes and shares the following:

ci = wi +
∑
j ̸=i

si,j mod p

Finally the server computes:∑
ci mod p =

∑
wi +

∑
j ̸=i

si,j mod p =
∑

wi +
∑
i

(s+i,j + s−i,j) =
∑

wi

– Even against a malicious server, the client models remain private.
– All parties must participate, may not be useful for CDFL where availability

may not be assumed
– No protection against a malicious client
– Computationally friendly compared to HE approach. (only addition calcu-

lations)

