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Abstract

This project studies the problem of network hardening in industrial control systems (ICSs) given

an administrator having limited resources to allocate. ICSs are a frequent target of attacks

because of their importance to infrastructure and their notoriety for utilising legacy systems.

Honeypots (HPs) have been used as a form of intrusion detection system which can detect a

vast swathe of possible attacks. However, given that the administrator can only afford to have

a select number HPs within a system, an allocation technique is required. I propose a game-

theoretic framework, which models a defender and attacker against each other, both attempting

to maximise their stated goals. This is done through a reward function that rewards the defender

for successfully intercepting an attack, but penalises it for non-interceptions. The attacker’s

reward function is the direct inverse of this and as such this game is what is called a Zero-Sum

game. The creation and preparation of the game-action space is done by utilising a novel graph

generator and reducing it through creating what are known as CAGs so that the complexity of

the action space is reasonable for large network sizes. Analysis is conducted on various graph

topology sizes in evaluating the performance and scalability of the model, including varying key

parameters and their effects on the game outcome.
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Glossary of Symbols

Graph Notations

G = (V,E) The directed graph on which the game is played: V is the set of network hosts

(nodes), E the set of directed edges (possible compromise relations).

V Vertex set of G; each element represents a host (machine) in the ICS.

E Edge set of G; each (u, v) ∈ E means host u can compromise host v.

S ⊆ V Source (entry) nodes from which an attacker may begin.

T ⊆ V Target nodes the attacker aims to reach.

cost(n) A value (e.g. monetary or risk score) assigned to node n ∈ V .

Attacker and Defender Action Sets

Aa Attacker’s pure-strategy set: set of paths from any s ∈ S to any t ∈ T .

Ad Defender’s pure-strategy set: selections of edges on which to deploy honeypots, including

“no action”, subject to budget.

NHP Defender’s honeypot budget (maximum number of honeypots that can be deployed).

comb(setedges, n) The set of all n combinations of edges setedges (used to enumerate Ad when

NHP > 1).

Payoff/Reward Function

Rd(ad, aa) Defender’s payoff when defender picks ad ∈ Ad and attacker picks aa ∈ Aa.

Rc Fixed reward for “capturing” an attacker (i.e. intercepting them on a honeypot).

Re Penalty (negative reward) when the attacker reaches the target uncaught.

Rh Cost multiplier per deployed honeypot.

α Exponent weighting to penalize larger honeypot allocations (e.g. α > 1 makes extra honeypots

increasingly expensive).
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|ad| Number of honeypots in action ad.

C = ad ∩ aa Intersection of defender- and attacker-edge sets; non-empty iff the attack is inter-

cepted.

LP Notation

x ∈ R|Ad| Defender’s mixed-strategy vector over Ad (probabilities sum to 1).

y ∈ R|Aa| Attacker’s mixed-strategy vector over Aa.

x⊤Rd(G)y Expected defender utility under (x,y).

Ud Defender’s value of the zero-sum game (optimal guaranteed payoff).

xn+1 Auxiliary variable appended to x in the LP formulation to represent Ud.

Core Attack Graph Notations

genCoreGraph(G, s, t, . . . ) Recursive procedure to compute the set of core paths from s to t.

computeAllCorePaths(G,S, T ) Aggregates core paths for every s ∈ S, t ∈ T .

P t
s(G) All simple paths from s to t in G.

τcg Transformation mapping G to its core attack graph CG
s,t = (Vc, Ec).

(Vc, Ec) Vertex and edge sets of the core attack graph (union of all induced subpaths).

ωc Optional weight function on edges of the core graph.

GENIND Parameters

G1, G2, G3 GENIND-generated subgraphs for network, control, and sensor layers.

N1, N2, N3 Number of nodes in the network, control, and sensor layers respectively

U1, U2 Number of clusters generated in the control and sensor layers by Control_Generator

and Sensor_Generator

Type1,Type2,Type3 Graph model types passed to Network_Generator, Control_Generator,

and Sensor_Generator (e.g. Gabriel, mesh, star, Barabási–Albert)

10



clusters Number of clusters in both control and sensor layers.

lower_bound, upper_bound Min/max connections from each control cluster into the network

layer.

Gc Combined graph after linking G1, G2, G3 per Algorithm 2.
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Abbreviations

AG Attack Graph

APT Advanced Persistent Threat

CAG Core Attack Graph

CPS Cyber-Physical System

ICS Industrial Control System

IDS Intrusion Detection System

LP Linear Program

NE Nash Equilibrium

SA Security Administrator

ZS Zero-Sum (Game)
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Chapter 1

Introduction

Industrial control systems (ICSs) are a frequent target of malicious actors, with the number

of attacks increasing as hackers become more advanced. 2024 saw nearly 1700 successful ran-

somware breaches, with that number invariably being higher taking into account that many of

these attacks go unreported (Lemos 2025). This is undoubtably a topic of heavy concern among

nation states. Given the inevitability of attacks, numerous efforts have been made in developing

systems that effectively detect intrusions against computer networks. Part of this effort includes

the development of Intrusion Detection Systems which are common devices that can be found

on most public and private networks. However, as time goes on, more and more sophisticated

attacks have appeared that can evade detection by masking as normal network traffic (Khraisat

et al. 2019). This gives us two aims to fulfil, that form the basis of cyber-deception as a

paradigm:

• To be able to consistently identify attacks, even when posing as normal traffic.

• Deter or discourage attackers from attacking in the first place, fearing detection.

1.1 The Approach to Defence

The proposal of this project is to present an effective method of defense by deception through

the use of allocating honeypots via a game-theoretic approach applied to attack graphs. The

subject of strategic honeypot allocation is as of now a growing field and as such, there are still

many unanswered questions. Many difficult questions need to be addressed in the formulation
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of the model and implementation for a project like this, e.g.;

• How can you accurately model the profiles of the attacker and defender so that this model

can be used effectively?

• How can you test and reproduce these results given a lack of publicly available models of

ICS networks to model them?

• Further, given that the attacker can (and will) move anywhere it wishes, how can we

provide a computationally efficient model which captures that behaviour?

To fulfil the aims stated earlier and directly tackle these questions, it is imperative not just

to understand the nature and motivations of an attacker, but also that of the defender. The

following Section 1.2 gives a brief overview on Stuxnet as a case study of understanding how

an attacker operates and how the defender must act in response. Section 1.3 explains the

development of the field of cyber deception, and the need for integrating it into ICS security.

1.2 Stuxnet: Motivations for Attack and Defence

Stuxnet was the first ever virus that utilised multiple zero-day attacks and targetted ICSs which

had previously been assumed to be very secure. Many experts conclude that at the minimum, the

creators of Stuxnet utilised a vast swathe of resources that rival nation states (Nakashima and

Warrick 2012), and has proven to be able to cause significant harm onto critical infrastructure.

Such actors have since been dubbed the Advanced Persistent Threat (APT). In the advent of

Stuxnet and the APT, a growing interest in researching prevention and detection of zero-day

attacks has forced security administrators (SAs) to rethink approaches to security. In Langner

2024, the author identified two philosophies in industrial security;

1. threat-centric security - focusing on identifying and eliminating as many known threats

as possible.

2. infrastructure-centric security - which focuses on creating robust and secure infras-

tructures, protected against a vast majority of conceivable attacks.

arguing that the latter of the two approaches maximises return on investment while address-

ing more types of attacks than the former. This project centers around this distinction of
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infrastructure-centric security as a guiding philosophy in tackling security problems, and aims

to address the looming threat that is the APT.

1.3 Defence by Deception

The biggest difficulty in defending against zero-day attacks is that they are definitionally un-

knowable. Since Stuxnet, SAs have shifted their approach to security to account for more

unknown threats, but there are still many issues that ICSs face that cannot be addressed with

traditional thinking. Deception as a form of defence has in recent decades gained popularity

amongst some groups of computer scientists inspired by the success of the ARMOR software

(Pita et al. 2009), which proved real world usage of game theory still in use at the LAX Inter-

national Airport.

Cyber-deception is a subset of a larger security paradigm known as security games which aims

to deceive attackers into performing actions which are counterproductive to their objective. In

favour of an infrastructure-centric approach, this project leverages a cyber-deception technique

known as honeypot allocation; which places faux hosts (or systems) connected to real networks

for the purpose of luring attackers to attack them where administrators can monitor and study

the attack’s behaviour. After appropriately assessing the attack’s risk to the system, the SA

exercises their judgement on what action is deemed an appropriate response.

There have been numerous efforts made to apply game theory onto network defence, many of

whom utilise the concept of honeypots to their model (Píbil et al. 2012; Kiekintveld, Lisỳ, and

Píbil 2015; Durkota, Lisỳ, Bošanskỳ, et al. 2019; Anwar, Kamhoua, and Leslie 2020 further

analysis of methodologies employed in these papers is done in Section 2.4). Inspired by these

previous efforts, this project attempts to model an APT attacker infiltrating an ICS with multiple

entry points and targets. This project takes particular inspiration by Nguemkam et al. 2024 in

the use of core attack graphs (developed by Barrère et al. 2017) for honeypot allocation, but

differs in the application and conceptualisation, as this project models network nodes as machines

instead of vulnerabilities.

The attacker (the APT) is assumed to have an abundance of resources and knowledge of the

network. The attacker also understands that the defender (the SA) of the network has employed

a honeypot allocation model on the network and can deduce the budget the defender has in
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employing these honeypots. The defender runs the game theoretic program and receives a

probability distribution of where they should place each honeypot, and equally crucial is the

defender also derives a number of honeypots to use (which may be equal or less than the budget).

As each honeypot placed incurs a cost on the defender, each honeypot not placed has the benefit

of not incurring any cost on the defender, but increases the risk of not having enough coverage

of the network in defending against the attacker.

1.4 Project Structure

The structure of the rest of this document is as follows;

• Chapter 2 includes a review of relevant literature including background on Industrial Con-

trol Systems, Attack Graphs and Honeypots, and further attempts to cover as many state

of the art game theory models on security games relevant to this project.

• Chapter 3 details the model and structure of the proposed game, including the specific

algorithms used to implement the game using python, including an example game played

on a simple attack graph.

• Chapter 4 includes details for the implementation of generating and preparing a graph for

the proposed game, summarising this in Section 4.3 with an example game played on a

more complex attack graph.

• Chapter 5 provides the results of experimentation by varying parameters and measuring

the outcomes of the game, and give critical evaluation for what was achieved and what

needs improvement.

• In Chapter 6, I discuss the model’s feasibility if implemented for real use cases and provide

critical evaluation for the overall conduct of the project.

• We conclude in Chapter 7 with what this project achieves, directions for future work in

this project’s model, and LSEP considerations.

In summary, I formulate a ICS network defense as a two-player security game between an

attacker, and a defender deploying honeypots. Leveraging the use of attack graphs to formulate

the action space and apply game-theoretic optimisation to determine how the defender should

allocate honeypots under limited resources. The specific objectives to fulfill are;
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• Develop a model for strategic honeypot allocation in ICS networks.

• Implement a topology generator simulating realistic ICS network structures.

• Employ an efficient method of reducing computational complexity through the use of

CAGs.

• Evaluate the scalability and effectiveness of the proposed model.

The methodology devised for this project aims to provide a systematic approach to hardening

ICS networks through the strategic placement of honeypots, and the quantity of honeypots to

place before achieving diminishing returns. Through experimentation, results show that strategic

allocation can significantly increase chances of detecting an intrusion before the attack can reach

its desired target.
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Chapter 2

Literature Review

This chapter outlines the relevant topics and foundational work in providing the background

of this project. First, addressing the need for novel network hardening techniques in industrial

control systems and the difficulties in implementing them. Reviewing attack graphs, why they

are uniquely able to tackle existing security problems, and how they can be leveraged for hon-

eypot allocation. Further, I discuss the limitations of traditional IDSs and suggest the use of

honeypot-based cyber-deception as a method for network hardening.

2.1 Industrial Control Systems

ICSs are systems used to control and monitor industrial processes such as electricity grids, water

distribution systems, oil refineries, nuclear power plants. Many of these industries are considered

critical infrastructure. In recent decades, many processes have integrated cloud computing to

streamline these processes (Bhamare et al. 2020), but many legacy systems remain in place that

were built and designed for reliability, durability and ease of use. As such, outdated software and

OS systems remain one of the largest security concerns for ICSs, having many vulnerabilities

and being highly susceptible to targeted attacks by malware.

In 2003, an attack on the Davis-Besse nuclear power plant exploited a T1 bridge connection

from a remote contractor bypassing the network firewall. The Slammer worm (also known as

Sapphire) exploited a buffer overflow attack in the Microsoft SQL engine which had already been

patched by then, but was not updated on the plant’s network servers (Poulsen 2003). In the

case of Stuxnet, the attackers utilised infected USB drives as its main payload delivery (Alladi,
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Chamola, and Zeadally 2020). Which allowed them to install a rootkit on compatible machines,

and search laterally through the network looking for a specific target PLC to inject code blocks

into it (Knapp 2024).

ICSs being cyber-physical systems (CPSs) suffer some of the same difficulties when attempting

to integrate cyber-security techniques. The heterogeneity of components that comprise the sys-

tem, namely different hardware and software products used. Each component and method of

integration can be a contributing factor to a CPS attack (Humayed et al. 2017). Communication

between ICS components often rely on legacy protocols lacking basic security measures. MOD-

BUS/TCP and DNP3 are common communication protocols in ICSs, MODBUS in particular

transmits messages in clear text with no encryption, no system for integrity checking, and no

way of authentication. DNP3 having a simple CRC integrity checker, also suffers from lack of

encryption and authentication (Byres, Franz, and Miller 2004). With vulnerable protocols as

above very much still in use today and heavily embedded into critical infrastructure (Malviya

2020; Gruenholz 2017), SAs need methods to track such existing vulnerabilities, along with

evaluation techniques to track the security of any given network.

2.2 Attack Graphs

Attack Graphs (AGs) are a method of graphically representing the security of a system as a

set of vertices and edges. The first use of attack graphs are attributed to Phillips and Swiler

1998 which at the time, compared to other models, had a strong ability to represent information

in a digestible way for security professionals. AGs have since become one of the most widely

popular frameworks for analyzing network security and have been used in network hardening

applications. Ammann, Wijesekera, and Kaushik 2002 used a variant of AGs called logical AGs

and proposed an algorithm for finding the minimal set of exploits required to compromise a

system and argued that AGs contain more information than necessary for security analysts and

introduced the monotonicity assumption. Which in plain terms mean; that attacks propagating

through a graph by travelling through edges, do not return to previously travelled edges (Zhang,

Wang, and Zio 2023). It is a well known issue of AGs that they frequently run into scalability

issues, and require various representation techniques to reduce computational requirements.

Barrère et al. 2017 further introduced the concept of core attack graphs (CAGs), as a method for

reducing the complexity of structures of AGs with a single entry and target point. The structure
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of a CAG is such that it comprises of only core attack paths, where a core attack path is a set

of edges connected through vertices such that each successive edge cannot be directly reached

by an edge previous to its connecting edge. This will be formally discussed later in Section 4.2.

AGs are usually used for analyzing complex patterns and sets of system vulnerabilities such that

they can be easily digestible for SAs. Various metrics have been developed for AG analysis and

usually widely differ in applications. The Common Vulnerability Scoring System (CVSS) has

often been used in various AG applications for probabilistic computations, such as calculating

network exploitability (Noel and Jajodia 2014). The authors of Durkota, Lisỳ, Bošanskỳ, et al.

2019 formulated the use of CVSS scores into their model to calculate the probability of successful

attacks. They study the problem of honeypot allocation on a set of common network topologies.

Though not used in this project, CVSS scores may be able to offer a real quantitative component

in calculating the path value of each attack path.

2.3 Honeypots (and a brief note on Intrusion Detection Systems)

This project studies the problem of optimal allocation of honeypots (HPs) and so the specifics of

how they operate are beyond the scope of this project, this section provides an overview of what

they are and the function they provide this project. Further discussed is the usage of Intrusion

Detection Systems (IDSs).

HPs are devices that exist on networks as decoy systems for the purpose of luring attacks

towards them and away from real systems. Since no real traffic should exist on a HP, anomalies

can easily be identified the instance that they happen. They are valuable assets for cybersecurity

researchers to use in identifying attack signatures for IDSs and operationally, they provide the

same function and use as IDSs but instead of passive monitoring of legitimate traffic, they

proactively trap attackers within themselves.

IDSs have long been used in industrial networks and similarly, hackers have long proven to

be effective in bypassing them through evasion techniques. Discussed here are some methods

employed by attackers as described in Khraisat et al. 2019. Fragmentation describes a technique

which attackers use to break packets into smaller packets to be reassembled by the recipient,

fragments may be sent over a long period of time which can further complicate an IDSs ability

to detect fragmented attacks. Obfuscation is the technique of concealing an attack by making
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the message difficult to understand. One specific method is to rewrite a known attack signature

from hexadecimal encoding to Unicode which allows a character to have multiple symbolised

formats, or even use double-encoding which exponentially increases the number of encodings

possible. Encryption may even be used to conceal attacks targeting computer systems.

IDSs face difficult challenges in ICSs of which they alone may not be able to overcome, attackers

with a certain level of skill will not be deterred by the existence of IDSs. HPs may similarly

encounter issues of detection through probing however this still requires the attacker to interact

with them, therefore still alerting the SA with the presence of the attacker. For these reasons,

HPs remain an important asset to SAs in detecting attacks.

2.4 Game-Theory

By definition, deception as a practice must exercise some level of unpredictability, otherwise it

can be fairly easy to deduce locations of HPs whether from the perspective of an attacker or

not. Therefore a requirement for our allocation technique is to be non-deterministic such that a

sufficiently advanced attacker is not able to reason the real location of a HP on a network. The

literature on cyber-deception is heavily influenced by game-theory, with honeypot allocation

being one of the most prominent methods utilising it.

The authors of Píbil et al. 2012 introduced the Honeypot Selection Game (HSG), which models

HPs heterogenously as attackers will vary their strategy when faced with varying options of

machines to attack. And defenders have the options in choosing a HP type. The nash equilibrium

(NE) solution of the problem is found when both attacker and defender select their actions

based on a probability distribution on their given options. Further, attackers with advanced

capabilities are able to utilize probing techniques that may allow attackers to identify hosts

that are actually HPs. The authors of Kiekintveld, Lisỳ, and Píbil 2015 reintroduced the HSG

with host devices classified into categories of importance such that these values correlate to the

gain/loss associated with a successful attack. In this version of the game, the defender must

reason and decide what types of HPs to add to a network given that they may vary in perceived

importance to an attacker. A reasonable assumption may be to choose a HP with the highest

value. However, a sophisticated attacker may reason that this host is "too good to be true", and

choose to attack the next best machine. Therefore, the optimal strategy is not as easily deduced

upon closer inspection.
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Many security games model the interaction between attacker and defender as a Stackelberg

Game, which models the first player (usually the defender) as the leader and the second player

(the attacker) as the follower. The follower observes the leader’s action and selects a strategy

based on their observation (Von Stackelberg 2010). It is assumed that the attacker is able to

observe the defender and calculate an optimal strategy in response, which matches the expected

behaviour of an APT. Intuitively, the first-mover is at a disadvantage because as the second-

mover, you are able to modify your given strategy according the first-mover’s strategy. However,

this intuition only holds when the first-mover must commit to a pure strategy (a single determin-

istic action). When mixed-strategies (first mover gives a probability distribution of actions) are

allowed, as proven by Von Stengel and Zamir 2010, the first-mover has no inherent disadvantage

as long as he commits to this strategy.

In Durkota, Lisỳ, Kiekintveld, et al. 2016, the authors surveyed from 45 participants, who were

attendees at a forensic malware seminar, and collected strategies for a proposed game model of

network defense on three simple network structures. They found that the strategies collected

tended to be simple and intuitive, and would be effective when defending against an attacker

who was also another human. However, methodical attacks from seasoned adversaries may not

have simple attack structures, game-theoretic modelling of optimal defense is highly likely to

beat most human strategies.

Durkota, Lisỳ, Bošanskỳ, et al. 2019 later proposed a game theoretic approach to network

defence by modelling the interaction between a strategic defender and attacker as a stackelberg

game. Simply, the defender commits to a probabilistic mixed strategy and the attacker observes

this before deploying an optimal pure strategy. The authors computed various zero sum game

heuristics and on different network topologies evaluating these games based on relative regret.

Their findings show that game-theoretic strategies benefit most when successfully determining

the attacker’s actions, however the settings of the reward structure and attack graph highly

influence the defender’s action.

Anwar, Kamhoua, and Leslie 2020 proposed a scalable framework for optimal HP allocation

over an AG network, their results showed the model outperforming random allocation. And

that their method of addressing exponential growth in complexity in the decomposition-based

algorithm performs close to the true full NE solution. Though their method yields promising

results, their experimentation was conducted on fairly small sized networks, and their turn based
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structure may not be a realistic model for very large networks.

Sayed et al. 2024 created a novel framework applying cyber deception in deploying honeypots

to dynamic networks where network topologies continuously change over time, and formulated

HP deployment as a two-player Markov game and solved for defender-attacker equilibria via a

Q-minimax algorithm using a compact state representation. Their results showed that strate-

gic allocation through their GT framework significantly lowers attacker payoff. However, they

solve a fundamentally different problem of modelling network mobility through the use of state-

transitions.

23



Chapter 3

Game Model and Structure

Introduced in this section is the structure and formulation of the game model, it describes a

game in which two players; an attacker and a defender, both simultaneously attempt to maximise

their rewards through optimising their corresponding mixed strategy. The game is played on a

graph with entry and target nodes, the goal of the attacker is to choose a path from entry to

target without encountering a honeypot, while the goal of the defender is to place honeypots on

the graph such that it is likely to intercept the attack path.

3.1 The Deception Game Model

Consider two strategies a defender may employ; (1) Placing all available HPs near the source

nodes. (2) Placing all available HPs near the target nodes. In our game model, the attacker is

modelled to have perfect knowledge of the game, and of the probability distribution of the set

of defender actions. If we limit the set of defender actions to solely the edges surrounding the

source nodes, an attacker that is not caught will have free reign to move through the network

with no worry of encountering a HP. Similarly, if we limit the set of defender actions to solely

the edges surrounding the target nodes, as long as an attacker does not approach the target

nodes, he will also have free reign to move through the network with no worry of encountering

a HP. Remembering that the focus of the project is not to protect the target hosts and ignoring

all others, but to harden the network specifically in the case that attackers will attempt to

move from source to target hosts. For these reasons, the structure of the game is modelled to

discourage an advanced attacker from freely traversing a given network.
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3.1.1 Modelling the game

Presented in Figure 3.1 is a simplified implementation of the game model on a graph G = (V,E).

where V = {s, 1, 2, 3, 4, 5, t}, and E = {(s, 1), (s, 2), (s, 3), (1, 4), (2, 4), (3, 5), (4, t), (5, t)}. The

set of entry nodes S = {s} and the set of target nodes is T = {t} where S, T ⊆ V . Each node

/∈ S will have a corresponding cost value assigned to it. The values chosen for this game are

cost = {10, 10, 20, 30, 30, 100}.

The set of attacker actions Aa is all the possible attack paths from {S → T} corresponding

to {(s, 1, 4, t), (s, 2, 4, t), (s, 3, 5, t)}. This can be algorithmically derived through a depth first

search recursive algorithm as shown in Algorithm 1.

Algorithm 1 Recursive DFS for finding Attack Paths
1: procedure FindPaths(current, path, all_paths, target_node, depth)

2: if depth = 0 then

3: return

4: end if

5: if current = target_node then

6: Append path to all_paths

7: return

8: end if

9: for each neighbor in graph[current] do

10: if neighbor not in path then

11: FindPaths(neighbor, path ∪ [neighbor], all_paths, target_node, depth - 1)

12: end if

13: end for

14: end procedure

The set of defender actions is Ad = {no action, {E}} when the number of honeypots NHP = 1.

When NHP > 1;

Ad = {no action, {E}, {comb({E}, 2)}, ..., {comb({E}, NHP)}}

where comb(setedges, n) is a function that returns all possible combinations of n nodes that exist

in setedges. Given the defender choice to place 1 honeypot (NHP), the set of defender actions
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Ad = {no action, (s, 1), (s, 2), (s, 3), (1, 4), (2, 4), (3, 5), (4, t), (5, t)}.

Figure 3.1: Probability distribution of placing a single honeypot on the simple game with node

values (in blue).

3.1.2 The Reward Function

To identify optimal defender actions to the game model, each scenario of defender and attacker

actions are considered and placed on a payoff matrix. The values in each cell of the payoff

matrix correspond to the payout Rd(ad, aa) the defender receives for his action ad against the

corresponding attacker action aa. Given as;

Rd(ad, aa) =


Rc +

∑
n∈Aa

cost(n)− (Rh · len(ad)α), if C ̸= ∅ (attack intercepted)

Re ·
∑

n∈Aa

cost(n)− (Rh · len(ad)α), if C = ∅ (attack succeeds)

Where Rc is a reward for capturing the attack, Re is the penalty for an attacker not being

captured, and Rh is a honeypot cost multiplier. α exists as a weight to favour lesser honeypot

allocations. len(ad) is the number of honeypots of the defender action ad. C is the intersection

of edges in the defender action and attack path:

C = {ad} ∩ {aa.toEdges()}

These values are conceptually meant to represent real monetary impact an organisation im-

plementing honeypots into their networks will have to take into account, however it is a loose
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formulation and will likely need further adjustments to be accurate. Rc is formulated as an

incentive, balancing the game structure so that when an attack is intercepted, it allows the

defender to profit. Further analysis on this can be found in Section 5.2.

Table 3.1 is the Payoff Matrix for the game played in Figure 3.1. Where Rc = 100, Re = −3,

Rh = 50 (α is not relevant when NHP is 1).

{s,1,4,t} {s,2,4,t} {s,3,5,t}
No Action -420 -420 -450

(s,1) -90 -470 -500
(s,2) -470 -90 -500
(s,3) -470 -470 -100
(1,4) -90 -470 -500
(2,4) -470 -90 -500
(3,5) -470 -470 -100
(4,t) -90 -90 -500
(5,t) -470 -470 -100

Table 3.1: Payoff matrix for a simple game.

3.1.3 Solution to the zero-sum game

The objective of the game is to obtain a probability distribution of optimal action responses x

given the game played in G. Formulated as a zero sum game such that Rd = −Ra,

Ud(G) = xTRd(G)y

where x and y are mixed strategies belonging to the defender and attacker respectively.

The linear program (LP) for finding an optimal payoff Ud can be given by

max
x, Ud

Ud

subject to
∑

ad∈Ad

Rd(ad, aa)xad ≥ Ud, ∀aa ∈ Aa.

∑
ad∈Ad

xad = 1,

xad ≥ 0, ∀ad ∈ Ad.

where xad gives the probability of taking action ad ∈ Ad.
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An equivalent formulation that is used in this implementation appends Ud as xn+1 to x satisfying

the following LP

min
x,xn+1

− xn+1

subject to
∑

ad∈Ad

Rd(ad, aa)xad − xn+1 ≥ 0, ∀aa ∈ Aa.

∑
ad∈Ad

xad = 1,

xad ≥ 0, ∀ad ∈ Ad,

xn+1is unbounded.

Used for this project is scipy.optimize.linprog from the SciPy (Virtanen et al. 2020) python

package. The result is an array of probabilities summing to 1, with the the last element being

the expected utility of the defender Ud.

The results of the simple game are {0, 0, 0, 0.525641, 0, 0, 0, 0.474359, 0,−289.743590}. There-

fore, the optimal defender strategy is to place a honeypot at (s, 3) with probability 0.525641

and (4, t) with probability 0.474359. Which corresponds to an expected utility of -289.743590.

Validating this is beyond the scope of the project (assuming the linprog function is correct),

however a method of doing so is described in detail in Appendix A.
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Chapter 4

Implementation

Listed here are deliverables implemented and presented in this chapter.

• Implement a method of random graph generation to approximate real network topologies

of Industrial Control Systems as demonstrated in Section 4.1.

• Leverage efficient ’pruning’ algorithms (core graph generation) to reduce the computation

time (Demonstrated in Section 4.2).

• Implement a game-theoretic model (described in the previous chapter, in Section 3.1) of

the honeypot allocation game on a simulated ICS topology. Such that it can determine op-

timal placement strategies of multiple honeypots and multiple entry and target machines.

Demonstrated in Section 4.3, with evaluation of the model in Chapter 5.

4.1 Generating a Topology

There exists minimal availability of publicly accessible industrial network topologies. For finan-

cial and security reasons, organisations tend to be quite secretive about the specific configurations

of their networks. Any information about the composition of ICS networks can be leveraged

into attacks on them. Further, there is little doubt that there exists some ethical issues with

conducting experimental attacks on real industrial topologies even for the purposes of fortifying

such networks.
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4.1.1 GENIND

Therefore, this project adapts a graph generator called the graph theoretic industrial topology

generator (GENIND) as described in (Alrumaih and Alenazi 2023), for creating representative

topologies of ICS networks. The generic structure of ICS topologies that GENIND attempts to

capture through a multigraph generator are the three layers of the topology.

1. The network layer: Includes servers, domain and safety controllers, historians, firewalls.

This layer primarily attempts to extract information from large data banks, and to trans-

port data across the organization.

2. The control layer: Includes hosts such as human-machine interfaces, workstations, pro-

grammable logic controllers. This layer is responsible for optaining, processing and trans-

mitting the dataflow from sensor layer and delivering time-sensitive services.

3. The sensor layer: Includes portable terminals, instruments, actuators, intelligent machines,

smart cars, motors and pumps. Sensor devices collect parameter data and generate con-

tinuous data streams transmitted through various types of connections to the control layer

in anticipation of instructions.

Figure 4.1: Main components of the GENIND topology generator.

The authors claim that the GENIND system closely resemble that of real network topologies

due to its hierarchical structure and by creating each layer with different graph constructing

techniques. The multigraph generator utilises three functions; Network_Generator(N1,Type1),
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Control_Generator(N2,Type2) and Sensor_Generator(N3,Type3).

4.1.2 Modified Linkup Procedure

The algorithm used for this project linking up each layer from the multigraph generator is

described in Algorithm 2. A slight modification is made in the algorithm to allow multiple

connections from the network to control layer to represent more interconnected systems. First,

all three separate graphs are combined into one such that they are able to form connections. Each

cluster n from Control Layer G2 selects nodes at random with a random number of connections

controlled by upper_bound and lower_bound, to connect to random nodes in the network layer

G1. Then for each cluster in G2 and G3, a single connection is made with a random node from

each cluster n.

Figure 4.2 is generated using the python library ’NetworkX’ (Hagberg, Schult, and Swart 2008)

showing an example of the combined graph with parameters N1 = 7, N2 = 5, N3 = 5, Type1 =

barabasi-albert, Type2 = ring, Type3 = star, upper_bound = 3, lower_bound = 3. The figure

also highlights example entry nodes N0 and N6 and target nodes S4_3 and S3_3.

Figure 4.2: Example implementation of GENIND with parameters.
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Algorithm 2 Combine And Link Up The Generated Graphs For All Zones
Require: G1 = Network Layer, G2 = Control Layer, G3 = Sensor Layer

Require: clusters = Number of clusters for both Control and Sensor Layer

Require: lower_bound, upper_bound = Minimum and maximum number of connections from

each Control cluster to the Network layer

Require: ComposeAllGraphs(G1, G2, G3) - a function that combines all graphs into one

Ensure: Gc(Vc, Ec) = Composed graph connected for all three layers

1: function CombineAndLinkupGraphs(G1, G2, G3, clusters)

2: Gc(Vc, Ec)← ComposeAllGraphs(G1, G2, G3)

3: for all n ∈ clusters do

4: connections← Random integer from lower_bound to upper_bound

5: for i = 1 to connections do

6: Gc.AddEdge(Random(G2[n]), Random(G1))

7: end for

8: end for

9: for all n ∈ clusters do

10: if G2 and G3 are not empty then

11: Gc.AddEdge(Random(G2[n]), Random(G3[n]))

12: end if

13: end for

14: return Gc(Vc, Ec)

15: end function

4.2 Creating Attack Graphs From Network Topologies

Usual approaches to AGs attempt to capture the possible paths an attacker may take to achieve

a target goal (i.e.; gain root access), and illustrating the dependencies between vulnerabilities in

the system. With the network topology of the ICS, many host systems can have bidirectional

connections. The generated topology is modelled as all edges being bidirectional such that any

host may compromise another host. This is of course an unrealistic assumption, and for generat-

ing attack paths, will introduce many unnecessary calculations. To solve this, (Nguemkam et al.

2024) utilised the concept of ‘Core Attack Graphs’ (CAGs) formulated by (Barrère et al. 2017)

as a method for reducing the number of paths to be calculated. Incidentally, by changing the
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network topology from undirected to an acyclic directed subgraph of the original, the unrealistic

assumption of any host being able to compromise another is mitigated. The graph is reduced

such that any host that escalates the attacker’s position in a network toward a target host is

vulnerable to an attack. Though not perfectly realistic, it is sufficient in modelling the complex

structure of attack paths that can exist on the topology.

4.2.1 Core Attack Graphs

CAGs are formulated to summarise multiple alternative vectors of attack between any two

nodes in the input graph, such that the only paths that can be obtained from the CAG cannot

be summarised into any other graph link. These are called core paths and share the same

properties of what is known in graph theory as induced paths (Nešetřil and Mendez 2012),

formally defined in Definition 1. A CAG therefore is essentially the set of all nodes and vertices

that exist in all core paths from s to t. Formally defined in Definition 2. (These definitions are

taken from Barrère et al. 2017)

Figure 4.3: (a) Superimposed paths, (b) inflated path, (c) core graph.

Definition 1 (Core Path). A path p(v0, . . . , vn) in G = (V,E), n > 0, is a core path if and only

if there is no other path p′ ̸= p such that p′ ⪯ p, i.e.:

∀vi ∈ p,∀k ∈ [2, n− i], (vi, vi+k) /∈ E (4.1)

Definition 2 (Core Attack Graph). Given a digraph G = (V,E) ∈ G, a source node s ∈ V , and

a target node t ∈ V , the corresponding core graph CG
s,t = (Vc ⊆ V,Ec ⊆ E,ωc) is the result of a

transformation τcg(G, s, t) defined as the union of core paths from s to t in G as follows:

τcg(G, s, t) ≡ CG
s,t ≡

⋃
p∈PG

s,t

p s.t. ∄p′ ∈ PG
s,t, p

′ ⪯ p (4.2)
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For the purpose of this project, the CAG generation algorithm is adapted from (Barrère et al.

2017) to model graph edges E as the ability of one host v ∈ V being able to compromise

another host v′ ∈ V . This differs from the original implementation which models edges as the

dependencies of vulnerabilities. The generation algorithm is described below in Algorithm 3.

Applying this generation technique to the network topology generated in Figure 4.2, produces

the CAG illustrated in Figure 4.4.

Figure 4.4: Core attack graph generated from Figure 4.2.

4.2.2 CAGs For Multiple Entry And Target Nodes

To realistically model an attacker’s behaviour within a system, multiple points of entry and

targets must be considered. One problem that arises with this is the introduction of cycles in
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Algorithm 3 Generate Core Attack Graph
Require: Graph G, start node s, target node t, path path, set L, core paths core_paths

Require: is_induced(path, node, G) - a function that checks if adding ’node’ to the current

path keeps the path induced.

1: function genCoreGraph(G, s, t, path, L, core_paths)

2: newpath← path + [s]

3: VC ← ∅

4: for all c ∈ core_paths do

5: add c to VC

6: end for

7: if s ∈ VC then

8: add s to VC

9: return //stop

10: end if

11: neighbours← G[s] or ∅ if s = ∅

12: if t ∈ neighbours and is_induced(newpath, L,G) then

13: add newpath + [t] to core_paths

14: return //stop

15: else

16: Lnew ← L+ neighbours + {s}

17: for all n ∈ neighbours do

18: if n /∈ L then

19: if is_induced(newpath, n,G) then

20: genCoreGraph(G,n, t, newpath, Lnew, core_paths)

21: end if

22: end if

23: end for

24: end if

25: end function

35



the created graph. However, this remains a non-issue as the attack paths can be computed for

each entry and target combination before combining them together. Algorithm 4 describes this

procedure.

Algorithm 4 Compute All Core Attack Paths
Require: Graph G, set of entry nodes entry_nodes, set of target nodes target_nodes

Ensure: All core paths between entry and target nodes

1: function computeAllCorePaths(G, entry_nodes, target_nodes)

2: all_core_paths← []

3: for all s ∈ entry_nodes do

4: for all t ∈ target_nodes do

5: core_paths← []

6: genCoreGraph(G, s, t, [], ∅, core_paths)

7: append core_paths to all_core_paths

8: end for

9: end for

10: return all_core_paths

11: end function

Applying Algorithm 4 to the ICS topology in Figure 4.2 produces the combined attack graph

shown in Figure 4.6(a).

4.3 The Game Action Space as Generated by the Framework So

Far

Summarising the overall implementation, we start with defining the parameters for the topology

we are trying to simulate and create a synthetic ICS topology through the GENIND generator.

These parameters are; the number of network nodes, the number of clusters, and the

number of nodes per cluster.1 After creating the topology, the graph is composed and

reformatted such that further processing can be done. The CAGs are computed for each entry
1There is a fourth parameter worked in to fix the number of connections from the Control to Sensor layer so

that we can deterministically recreate the graphs for evaluation.
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Figure 4.5: Pipeline for building the combined CAG for use as the game action space.

and target pair, and are combined into a full CAG. With this, random values are assigned to

each node in the graph,2 and the output of the pipeline is; the set of edges of the full CAG,

the list of node values, and the list of attack paths.

With this implementation, the goal is to now play the deception game on the action space as

produced by the pipeline as described above (and presented in Figure 4.5).

4.3.1 The game played on the combined CAG

To recapitulate the game model in Chapter 3, the defender’s action ad ∈ Ad, constrained by the

budget NHP such that len(ad) ≤ NHP, is pitted against the attacker’s action aa ∈ Aa which is a

set of nodes ∈ V which span the attack graph G(V,E) from one entry node to a target node.

The payoff table is a matrix of payoff values given by Rd(ad, aa), where Ad comprises the set of

row actions and Aa comprises the set of column actions. The solution of which is a probability

distribution of defender actions which maximise the defender’s payoff, calculated by a linear

programming function.

Figure 4.6(b) shows output of the program highlighting the edges which comprise the mixed

strategy profile of the defender action based on a weighing function that increases the thickness

of the edge according to the probability distribution shown in Table 4.1, which shows the top

20 actions the defender should take according to the probability of choosing that action.

An important modification to the generation of defender actions Ad that needs to be mentioned

is that for the game to produce more diverse strategy profiles consistently, the set of defender

actions was modified to disallow placement on edges connecting to sensor nodes.

2These values are deterministically set by a seed in evaluation.
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Probability Defender Action (Set of Edges)
0.3140 {(’C3_1’, ’C3_0’), (’C4_1’, ’C4_0’), (’N4’, ’C4_0’)}
0.1782 {(’C3_2’, ’C3_3’), (’C4_3’, ’C4_0’), (’N3’, ’C3_0’)}
0.1348 {(’C3_2’, ’C3_3’), (’C4_1’, ’C4_0’), (’C4_3’, ’C4_0’)}
0.0948 {(’C3_1’, ’C3_0’), (’C3_2’, ’C3_3’), (’N3’, ’C3_0’)}
0.0612 {(’C2_2’, ’N4’), (’C4_3’, ’C4_0’), (’N3’, ’C3_0’)}
0.0578 {(’C4_3’, ’C4_0’), (’N4’, ’C4_0’), (’N5’, ’C3_2’)}
0.0542 {(’C3_1’, ’C3_2’), (’C4_3’, ’C4_0’), (’N4’, ’C4_0’)}
0.0250 {(’C4_2’, ’C4_1’), (’N3’, ’C3_0’), (’N4’, ’C3_1’)}
0.0237 {(’C3_2’, ’C3_3’), (’N3’, ’C3_0’), (’N5’, ’C3_2’)}
0.0128 {(’C2_2’, ’N4’), (’N3’, ’C3_0’), (’N3’, ’N6’)}
0.0103 {(’C4_3’, ’C4_0’), (’N4’, ’C3_1’), (’N4’, ’N5’)}
0.0100 {(’C2_2’, ’N4’), (’N1’, ’N3’), (’N2’, ’N3’)}
0.0073 {(’C2_0’, ’C2_1’), (’C4_2’, ’C4_1’), (’N3’, ’C3_0’)}
0.0053 {(’C2_2’, ’N4’), (’C4_3’, ’C4_0’), (’N3’, ’N5’)}
0.0037 {(’C3_1’, ’C3_2’), (’N3’, ’N6’), (’N4’, ’C4_0’)}
0.0027 {(’C2_0’, ’C2_1’), (’C4_3’, ’C4_0’), (’N3’, ’C3_0’)}
0.0020 {(’N3’, ’C3_0’), (’N4’, ’C3_1’), (’N4’, ’N5’)}
0.0012 {(’C2_2’, ’N4’), (’C4_3’, ’C4_0’), (’N5’, ’N4’)}
0.0005 {(’C2_2’, ’N4’), (’N1’, ’N4’), (’N2’, ’N3’)}
0.0005 {(’C2_2’, ’N4’), (’C4_1’, ’C4_0’), (’N1’, ’N4’)}

Table 4.1: Probabilities of choosing corresponding sets of edges
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(a) Full CAG produced for two entry and two target

nodes on the topography generated in Figure 4.2.

(b) Sample game played on the CAG produced in

Figure 4.6(a) with 3 honeypots.(Highlighted lines are

weighted based on their probabilities as shown in Ta-

ble 4.1)

Figure 4.6: Full CAG and Game Result produced from the GENIND topology with two entry

nodes (N0, N6) and two target nodes (S3_3, S4_3).
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Chapter 5

Results

5.1 Evaluation Setup

Network nn nc npcl fc
1 (Mini) 4 2 2 1
2 (Small) 5 3 2 2
3 (Medium) 6 4 3 3
4 (Large) 7 5 4 3

Table 5.1: Network Parameters for Different Configurations; nn (number of network nodes), nc

(number of clusters), npcl (number of nodes per cluster), fc (fixed number connections)

A series of experiments are used to conduct evaluation on the performance and characteris-

tics of this model on different ICS graphs. For these experiments, different sized graphs with

varying numbers of connections between the network and controller layer are considered, this is

implemented via a function which builds the game action space as described in Section 4.3 and

visualised in Figure 4.5. Table 5.1 gives the 4 compositions and their parameters considered in

producing the evaluation graphs shown in Figure 5.1. Admittedly, the values for each configu-

ration are arbitrarily chosen, however they are meant to show meaningful differences in values

when calculating results, as varying each one manually will not yield intelligible graphs. To

produce Figure 5.2, we only consider a honeypot budget NHP of 3. Only two entry and target

nodes are considered for all network configurations and are deterministically set according to
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the following parameters;

entry_nodes = [N[first node],N[last node]],

target_nodes = [S[last node in last cluster], S[last node in second last cluster]]

All experiments use the following parameters Rc = 2000, Re = −1, Rh = 200 and α = 1.125, in

setting up the game.

5.2 Experimental Analysis

Evaluating the performance of this honeypot allocation model involves calculating its effective-

ness and scalability measured by varying network sizes and the honeypot budget. From here,

optimal payoff and optimal value are used interchangeably for the measure of Ud.

In Figure 5.1(a), we see the effect of increasing the honeypot budget NHP on the optimal payoff

Ud calculated by the linear program. There is no pattern of increase according to the network

sizes but it shows that there is an ‘optimal budget’ of honeypots where a higher number no

longer helps to increase the payoff.

Figure 5.1(b) shows that generally the processing time increases exponentially according to NHP,

with the exception when the budget is 1, which is likely because of overhead calculations made

by the linear program.

Figure 5.1(c) shows the defender action space Ad growing exponentially with NHP increasing,

this is expected as Ad is a combinatorial number of honeypots based on the number of allowable

edges. Network 1 (Mini) is unseen as it is overshadowed by Network 2 (Small).

Based on the findings in exponential scaling with processing time and action space Ad according

to the honeypot budget, these two values are likely correlated. And we see in Figure 5.1(d) that

the combined action (Ad, Aa) space scales linearly to processing time. Networks 1 and 2 (Mini

and Small) have very small action spaces and minimal processing time and as such; they do not

appear.

Figure 5.2(a) shows that optimal payoff Ud generally decreases as honeypot cost Rh increases.

This is likely influenced by the honeypot scaling factor α which favours lesser honeypot alloca-

tions. When Rh increases, the model starts to favour defender actions ad with less allocations

which will increase Ud.
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(a) Optimal value increases until it hits a ’ceiling’

and then cannot increase due to already reaching op-

timal number of honeypots.

(b) Processing time spikes by orders of magnitude

with higher honeypot budgets for larger configura-

tions.

(c) Defender actions grows exponentially with hon-

eypot budget, larger setups exhibit dramatically

higher action counts.

(d) The total number of defender × attacker actions

scales linearly with processing time across all node

and cluster configurations.

Figure 5.1: Comparison of various evaluation results varying each game by the honeypot budget

Figure 5.2(b) shows almost linear scaling for varying capture reward, however degenerates when

the capture reward is close to 0. This can be explained by a couple of factors; when the reward for

capture is so small, the model may not be incentivised to act at all if the cost of allocation exceeds

the reward, therefore resulting in a more nuanced defender strategy where it may consider no

allocation. Because the decision threshold for whether an attack should be caught or not may

be very small, the results can be influenced by small variations in any of the following; node

values, capture reward, scaling factor, budget, etc.
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(a) Varying the honeypot cost on the optimal de-

fender payoff Ud shows diminishing returns for higher

deployment costs.

(b) Varying the capture reward Rc on optimal payoff

Ud shows almost linear scaling when Rc is sufficiently

high.

Figure 5.2: Measure of optimal value Ud when varying honeypot cost Rh and capture reward

Rc, with NHP = 3.
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Chapter 6

Discussion

Many existing game-theory models require an advanced degree of understanding in game theory,

cyber security, and in some cases, knowledge of attack graphs. I believe the formulation of

this model is an approachable framework that does not require a user to have much advanced

knowledge to utilise as a tool, though assigning node values may require further analysis on the

user’s side. The user must understand that the output is a probability distribution of actions

to employ and decide what to use it for, though that is beyond the scope of this framework,

they may choose to run a randomiser to select which action to employ based on its probability,

possibly employ a rank based selection of the top n values. They may even decide to not use

this framework for real application but strictly to analyse the security of their ICS network.

A novel technique this project proposes is the concept of a full CAG (Section 4.2.2) which

builds off of Core Attack Graphs in Barrère et al. 2017. Nguemkam et al. 2024 used CAGs to

efficiently approximate the optimal game value but only utilised the concept for a single entry

and target node. My proposal was to combine the CAGs of each entry node to each target node

(calculating the core paths each time, thus avoiding the problem of cycles being introduced)

and use the combined full CAG for approximating the optimal value. Though not a particularly

complex idea, to the best of my knowledge, it is still a novel formulation in generating attack

graphs for multiple points of entries and targets on the same graph.
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6.1 Critical Evaluation

It is difficult to say whether this model has much real world application, certainly in its current

form it has many areas to improve in. Firstly, the reward function is somewhat arbitrary in its

formulation and can certainly benefit from more research, one problem with it is the non-capture

penalty Re. I initially reasoned that a multiplier effect for penalizing successful attacks could

be useful to weigh them more negatively. However, a larger Re proved difficult to optimize for,

and most of my experimentation could only resolve when the value was closer to 1.

Next, the proposed attacker model which is able to attack any and all machines is unreasonable,

this is currently ignored because the game is modelled on a CAG of a random graph. Therefore,

it is assumed that paths that the attacker cannot take are already ignored by playing the game

on the CAG. However, if the game is played on a real ICS topology, some further formulation

of which nodes can and cannot be attacked are required to produce a reasonable CAG, possibly

through the use of external Attack Graph tools such as MulVal (Ou, Govindavajhala, Appel,

et al. 2005).

Another issue is that with the way GENIND (Section 4.1) creates graphs, the defender action

space needs to be reduced to exclude sensor nodes because the model will usually favour placing

honeypots on those edges, as it is usually the most efficient strategy. More research is required

in determining whether this topology formulation can accurately simulate attacks and whether

a more realistic defender action space is needed.

This model works at a fairly efficient pace for minimal honeypot allocations but starts requiring

large processing times for larger networks and larger honeypot budgets. This is largely due to

the set of defender actions exploding in size as the number of combinations of placements scales

exponentially. Some preparation in determining whether a large honeypot budget is even needed

may be used, as evidenced by the ‘ceiling’ shown in Figure 5.1(a) and estimating the processing

time can be done by extrapolating Figure 5.1(d).

In summation; the model has difficulty scaling per the honeypot budget NHP and with larger

network sizes. Further, there are issues with balancing realistic parameters with producing

compelling results for the topology. And in general, it is difficult to evaluate whether this

specific model is usable for real world application.
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Chapter 7

Conclusion

This project has explored and demonstrated a working game theoretic model which leverages

a cyberdeception technique known as honeypot allocation for hardening network security in in-

dustrial control systems. As opposed to other works, this project focuses on the application

to ICS networks with a simplified model that can consider multiple entry and target nodes.

Implementation of this model is done by applying it to an action space generated by a novel

topology generator called GENIND and ‘pruned’ through producing CAGs for each entry and

target pair. Several experiments are conducted on various topology sizes to evaluate the scal-

ability and performance of the proposed model, with further analysis on the effects of varying

the capture reward, and the budget and cost of honeypots. This model’s application in the real

world and its limitations are discussed, with critical evaluation on how this project was generally

handled.

The following is a brief summary of what this project has achieved;

• Evaluate the state of the art in game theory techniques for honeypot allocation.

• Provide a working model for application specifically for ICS networks.

• Proposed and implemented a suitable framework for applying the model onto generated

ICS topologies, including creating and combining CAGs of the topology.

• Evaluated the performance of the model in terms of scalability, and

• Analysed the sensitivity and effects of changing various parameters on the game’s outcome.

Successfully fulfilling the aims and objectives laid out in Chapter 1.
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7.1 Future Work

Future work in evaluating the effect of using the full attack graph instead of CAGs may be

useful, and would validate if Nguemkam et al. 2024’s results of negligible difference between

the two hold true for our formulation of the game. Further, there may be room for further

efficient computation by utilising or formulating a ‘pruning’ algorithm which can further reduce

the defender and attacker action space.

There are likely solutions to the issues detailed in Section 6.1 but not implemented due to time

constraints. For example, a turn-based game in which an attacker would move through the

system and the defender deciding whether and where it should allocate a honeypot based on the

attacker’s position (such as the one proposed in Anwar, Kamhoua, and Leslie 2020) may solve

the issue of exponential growth in action-space. However, this requires a drastic reformulation

of the game.

However, there is likely future potential for a more efficient method of generating a reduced

defender action set such that unlikely choices are ignored, or possibly combine similar actions

such that they summarise actions in a similar way that CAGs do.

More experimentation with the payoff function in Section 3.1.2 can be conducted for more

realistic results, however an objective metric comparison should then be considered. One possible

comparison could be to conduct a random allocation strategy. However, a randomized strategy

will not yield stable results and may not be a valid method of evaluation.

7.2 Legal, Social, Ethical and Professional Issues (LSEP)

The subject of honeypots is of important concern in the security community and to this paper.

The application of HPs and whether they are considered enticement or entrapment, and where

that line can be drawn is hazy, not very well understood, but is the difference between

what is Legal and Illegal. Administrators who opt to use honeypots must have a high level

of expertise in their field and should consult legal professionals in determining their usage. The

framework developed in this project, in and of itself would likely not violate any laws. However,

there is always the chance that some administrator with or without the understanding of legal

issues with honeypots, may utilise this framework for the purpose of entrapment.
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The Social Responsibility of taking up this project includes running the risk of the above,

however I believe that an effective method of implementing game theory for security purposes

can, and has proven to (Pita et al. 2009) have greater societal impacts.

As far as I understand, under consultation with this project’s supervisor Dr. Martín Barrère

Cambrun, this project does not involve any Ethical Issues, uses no external datasets, and

does not involve any data collection, and has been approved for submission.

In the British Computer Society (BCS) Code of Conduct1, they lay out some considerations for

professional competence and integrity, I take these as reference for my Professional Conduct

and profess that I adhere to all points listed below;

1. I have only undertaken work that is within my professional competence, and do not claim

any level of competence that I do not posess.

2. I strive to develop my professional knowledge, skills and competence on a continuing basis,

maintaining awareness of technological developments, procedures, and standards relevant

to this field.

3. I ensure I have sufficient knowledge and understanding of legislation and comply with such

legislation in carrying out my professional responsibilities.

4. I respect and value alternative viewpoints and have sought out and taken in honest criti-

cisms of my work, particularly in conversations and scheduled meetings with my supervisor

Dr. Barrère.

5. I have not been made any offer of bribery or unethical inducement.

1https://www.bcs.org/membership-and-registrations/become-a-member/bcs-code-of-conduct/
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Durkota, Karel, Viliam Lisỳ, Christopher Kiekintveld, et al. (2016). “Case studies of network

defense with attack graph games”. In: IEEE Intelligent Systems 31.5, pp. 24–30.

49

https://doi.org/https://doi.org/10.1016/j.aej.2023.07.062
https://www.sciencedirect.com/science/article/pii/S111001682300649X
https://www.sciencedirect.com/science/article/pii/S111001682300649X
https://doi.org/10.23919/CNSM.2017.8256038


Gruenholz, Julie (Sept. 2017). Why, in 2017,are we still using Modbus? url: https://www.

hallam-ics.com/blog/why-in-2017-are-we-still-using-modbus.

Hagberg, Aric A., Daniel A. Schult, and Pieter J. Swart (2008). “Exploring Network Structure,

Dynamics, and Function using NetworkX”. In: Proceedings of the 7th Python in Science Con-

ference. Ed. by Gaël Varoquaux, Travis Vaught, and Jarrod Millman. Pasadena, CA USA,

pp. 11–15.

Humayed, Abdulmalik et al. (2017). “Cyber-physical systems security—A survey”. In: IEEE

Internet of Things Journal 4.6, pp. 1802–1831.

Khraisat, Ansam et al. (2019). “Survey of intrusion detection systems: techniques, datasets and

challenges”. In: Cybersecurity 2.1, pp. 1–22.
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Appendix A

Validating Optimal Payoff

The calculation of the optimal value is given by the result of the LP implemented in SciPy’s

scipy.optimize.linprog as discussed in 3.1.3. This is trusted to be implemented correctly,

however for peace of mind, we can further validate these results by additional computation of the

attacker’s LP and computing the results of both players strategies externally. Note; the original

LP which returns the defender’s mixed strategy also computes the attacker’s mixed strategy,

but does not return it.

A.1 Attacker’s dual linear program

Given the zero-sum formulation of the game, the attacker’s reward matrix is defined as the

negative of the defender’s reward matrix, i.e., Ra = −Rd.

The attacker’s goal is to maximise their expected utility Ua under the constraint that the defender

will act optimally. This results in the following linear program:

max
y, Ua

Ua

subject to
∑

aa∈Aa

−Rd(ad, aa)yaa ≤ Ua, ∀ad ∈ Ad

∑
aa∈Aa

yaa = 1

yaa ≥ 0, ∀aa ∈ Aa

Solving this linear program returns the optimal mixed strategy for the attacker, where yaa
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represents the probability of selecting action aa ∈ Aa.

A.2 Calculating the Game Result

Consider a zero-sum game with payoff matrix P ∈ Rm×n. Let

x∗ = (x∗
1, . . . ,x

∗
m)⊤, y∗ = (y∗

1, . . . ,y
∗
n)

⊤

be the defender’s and attacker’s mixed strategies, respectively, satisfying

x∗
i ≥ 0,

m∑
i=1

x∗
i = 1, y∗

j ≥ 0,
n∑

j=1

y∗
j = 1.

Then the equilibrium v∗ of the game is

v∗ = x∗⊤ P y∗ =

m∑
i=1

n∑
j=1

x∗
i Pij y

∗
j .
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