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※ Lecture 1

1.1 What is a Transformer?

Figure 1: The Transformer model architecture.

The Transformer Model is a framework for making sequence to sequence
predictions, using an encoder-decoder architecture with self-attention imple-
mented within itself to capture context in short and long distances.

The encoder maps an input sequence into an abstract continuous representa-
tion that holds all the learned information of that input. The decoder then takes
that continuous representation and generates single output tokens step-by-step
feeding in the previous generated token.

1.2 Attention!!!

The attention function is a mapping of a query and a set of key-value pairs
to an output, where the query, keys, values and output are all vectors. The
output is computed as a weighted sum of the values, where the weight assigned
to each value is computed by a compatibility function of the query with the
corresponding key.

𝑞𝑖 =𝑊
𝑞𝑒𝑖 , 𝑘𝑖 =𝑊

𝑘𝑒𝑖 , 𝑣𝑖 =𝑊
𝑣𝑒𝑖
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COM3031 lecture notes 1.2 Attention!!!

Attention scores can be calculated as example; 𝑎1,𝑖 =
𝑞1·𝑘𝑖√
𝑑𝑘

. where dimension
𝑑𝑘 is scaled to its square root because the dot product can grow quite large. This
is not the whole sequence however, we still need to apply the Softmax() function
to it to scale the scores as probabilities from 0 to 1. The output of this function is
then multiplied by the value 𝑣𝑖 ∈ 𝑉 vector to get the output vector. The higher
softmax scores keep the value of the words the model learns as more important
and words with lower scores get drowned out as irrelevant. The output is then
fed into a linear layer to process.

Attention(𝑄, 𝐾,𝑉) = softmax(𝑄𝐾
𝑇

√
𝑑𝑘

)𝑉

Positional Encoding (PE)

In the original “attention is all you need” paper, the transformer uses fixed
sinusoidal vectors added to token embeddings to allow the model to infer
relative positions and extrapolate to longer sequences.

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = sin( 𝑝𝑜𝑠

10000
2𝑖

𝑑model

),

𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = cos( 𝑝𝑜𝑠

10000
2𝑖

𝑑model

)

The final input embeddings are the concatenation of the learnable embedding
and the positional encoding.

Multi-Head Attention

If we take;
c𝑖 = Attention(𝑄𝑊𝑄

𝑖
, 𝐾𝑊𝐾

𝑖 , 𝑉𝑊
𝑉
𝑖 )

Then applying the Scaled Dot-Product Attention multiple times on linearly
transformed inputs is;

Multi-Head(𝑄, 𝐾,𝑉) = concat(c1, . . . , cℎ)𝑊𝑂 .

Residual Connections

The multi-headed attention output vector is added to the original positional
input embedding, in what is called a residual connection. The output of this
residual connection goes through a layer normalization.

Layer Norm

An operation for normalizing the values in each column of the matrix sepa-
rately. This is to improve the stability of the model during training, by making
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the average value in each column equal to 0 and the standard deviation equal to
1.

Multi-Layer Perceptron

The normalized residual output gets projected through a pointwise feed-
forward network for further processing which consists of linear layers with a
ReLU activation in between. The output of that is then fed to the input of the
pointwise feed-forward network and further normalized.

Encoder

Is the input to a continuous representation with attention information which
helps the decoder focus on the appropriate words in the input during the de-
coding process. This can be stacked however many times to further encode
information where each layer has the opportunity to learn different attention
representations.

Decoder

The decoder on the other hand generates text sequences and as such has
two multi-headed attention layers, a pointwise feed-forward layer, and residual
connects and layer normalizations after each sub-layer. These sub-layers behave
similarly to those in the encoder but each multi-headed attention layer has a
different job. The decoder is capped with a linear layer that acts as the classifier
with a softmax to get the word probabilities.

Masking

The first layer of the decoder operates different to the rest, to prevent learn-
ing from future tokens (autoregression), masking is applied before calculating
the softmax such that each query token has only access to key tokens that are
positioned before it, not after. The mask of -inf essentially leaves the matrix with
zeroes after applying the softmax() function.

※ Lecture 2

2.1 Positional Encoding Cont.

RoPE

Another method for PE is using Rotary Position Embeddings. By encoding
absolute position with a rotation matrix, the positional encoding multiplies Key
and Value matrices of every attention layer. Given rotation matrix R as;
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𝑅𝜃𝑝,𝑘 =

[
cos𝜃𝑝,𝑘 − sin𝜃𝑝,𝑘

sin𝜃𝑝,𝑘 cos𝜃𝑝,𝑘

]
where 𝑝 is the token’s absolute position and 𝑘 = 0, . . . , 𝑑2 − 1 indexes each 2D

sub-space, and 𝑑 is the model/attention dimension.

The positional encoding is performed as;

q′
𝑝 = q𝑝 𝑅𝑝 , k′

𝑝 = k𝑝 𝑅𝑝 , v′
𝑝 = v𝑝 𝑅𝑝

element-wise for each 2-D pair (2𝑘, 2𝑘 + 1) as;

𝑞′𝑝, 2𝑘 = 𝑞𝑝, 2𝑘 cos𝜃𝑝,𝑘 − 𝑞𝑝, 2𝑘+1 sin𝜃𝑝,𝑘 ,

𝑞′𝑝, 2𝑘+1 = 𝑞𝑝, 2𝑘 sin𝜃𝑝,𝑘 + 𝑞𝑝, 2𝑘+1 cos𝜃𝑝,𝑘 ,

Thus RoPE injects position by rotating each 2D sub-vector through an an-
gle that grows linearly with the absolute position while remaining distance-
equivariant. Attention scores depend only on the relative offset 𝑝𝑖 − 𝑝 𝑗 , which
helps generalisation for very long sequences.

ALiBi

Another PE technique, the core idea is that for each attention head ℎ, add a
monotonic linear bias to the raw dot-product score between Query position 𝑖

and Key position 𝑗;

score(ℎ)
𝑖 , 𝑗

= 𝑄
(ℎ)
𝑖

· 𝐾(ℎ)
𝑖

− 𝑚ℎ|𝑖 − 𝑗|,

where 𝑚ℎ ≥ 0 is a head-specific slope (larger for lower heads, smaller for higher
heads). And, |𝑖 − 𝑗| is the relative distance in timesteps/tokens.

Figure 2: Diagram of matrix score calculation.
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※ Lecture 3

3.1 Large Language Models

These are deep learning models primarily based on the transformer architecture.
They are trained on vast amounts of text data to predict subsequent words or
tokens, capturing complex patterns of language.

Architecture

Transformers use self-attention mechanisms to process input sequences si-
multaneously rather than sequentially.

Notable Models

• GPT Series - Known for powerful generative abilities and extensive fine-
tuning capabilities (GPT-3; 175B parameters)

• LLaMA 1 - trained on publicly available data, and more efficient with much
more compact model at 13B parameters

• LLaMA 1 - with an extended context length (4096 tokens), introduces group-
query attention (GQA), RMSNorm normalization, SwiGLU activation, RoPE
positional encoding.

3.2 Mixture of Experts

Or MoE, enhances transformer architectures by integrating specialized neural
network modules (“experts”) selectively engaged based on input data, increasing
efficiency and capability.

Concept

Expert modules are specialized subnetworks activated selectively for pro-
cessing different data subsets. The router network assigns inputs dynamically
to appropriate experts based on relevance.

E.g., Mixtral 8x7B

Sparse MoE model with 8 feedforward expert modules per layer. Its tokens
are dynamically routed through 2 experts per layer, effectively leveraging 47B
parameters while activating only 13B per inference pass. Mixtral excels in
benchmarking areas like math, code and multilingual tasks.
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COM3031 lecture notes 3.3 Parameter-Efficient Fine Tuning

3.3 Parameter-Efficient Fine Tuning

PEFT techniques enable efficient adaptation of large pretrained models to various
downstream applications. By only fine-tuning a small number of (extra) model
parameters instead of all the model’s parameters.

LoRA (Low-Rank Adaptation)

Introduces low-rank decomposition matrices into model layers. Adjustments
restricted to these low-rank matrices (A and B) significantly reduce computa-
tional demands.

Prompt Tuning

describes freezing the model weights and fine-tuning small trainable vectors
(“soft prompts”) prepended to the input sequences. Particularly effective when
minimal updates are required, leveraging pretrained capabilities efficiently.

3.4 Longer Contexts in Transformers

Standard transformers suffer from fixed, limited context lengths. Longer-context
transformers solve these constraints, allowing models to capture dependencies
over extended text sequences.

Transformer-XL

Conventional transformers operate inside a fixed window 𝐿. Every new
window is processed from scratch so tokens near the front of a window cannot
attend to tokens just before it → fragmenting long-range dependencies. Further,
evaluation latency is quadratic in L for every step because past keys/values are
recomputed.

Transformer-XL divides a long stream into successive segments 𝑥𝑡 of length 𝐿
and stores the hidden states of each segment as an external memory 𝑀 𝑙

𝑡−1 for the
next segment, maintaining these hidden states from previous segments. This
also preserves the parallel computation benefits of self-attention within each
segment.

For layer 𝑙 at segment 𝑡:

�̃�ℓ
𝑡−1 = stop_grad

(
𝐻ℓ
𝑡−1

)
; 𝐻ℓ

𝑡 = TransformerBlockℓ
(
[�̃�ℓ

𝑡−1; 𝐻ℓ−1
𝑡 ]

)
Recurrence allows Transformer-XL to access information from much longer

contexts compared to standard transformers, extending their context lengths.

Only the keys and values of the self-attention receive the memory. Queries
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COM3031 lecture notes 3.5 Parametric-Efficient Fine-Tuning

Figure 3: Segment recurrence in Transformer-XL architecture.

come solely from the current segment. Computational cost is𝑂(𝐿(𝐿+𝑀))where
𝑀 is the memory size. However, M is reused and so inference time per token
falls by 180x on WikiText-103 compared with a naive sliding window.

The relative positional encoding allows it to encode the relative distance be-
tween positions (e.g., token positions 𝑖 and 𝑗; relative distance (𝑖− 𝑗)) rather than
their absolute positions (as in a standard Transformer). Allowing Transformer-
XL to generalise better across different sequence lengths and positions.

3.5 Parametric-Efficient Fine-Tuning

PEFT techniques address computational constraints by minimally adjusting or
freezing most parameters of pretrained models during fine-tuning, updating
only small subsets of parameters.

Low-Rank Adaptation

LoRA introduces low-rank decomposition matrixes into model layers. Ad-
justments to the model are restricted to these low-rank matrices (A and B),
significantly reducing computational demands.

Figure 4: LoRA PEFT method.

ReLoRA
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ReLoRA uses sequential low-rank updates with periodic (optimiser) resets
to approximate full high-rank training. Starts with full-rank training but then
switches to low-rank updates with optimizer resets and a jagged learning rate
schedule (Fig 5) for stability.

Outperforms LoRA at larger scales, though gains in fine-tuning are less
pronounced.

Figure 5: LoRA PEFT method.

Prompt Tuning

Another type of PEFT approach for transformers, it works by inserting a soft-
prompt in a frozen transformer, prepended to the input sequence for fine-tuning.

3.6 Normalization

Activation functions propogating through very deep nets can drift toward sat-
urated ends of non-linearities. This slows learning and causes vanishing and
exploding gradients.

Normalization rescales/recenters intermediate representations so every layer
receives a more stable distribution, enabling faster convergence, regularisation
and smoother loss landscapes.

Batch-Normalization Normalizes each feature within a batch. During training,
each batch computes the mean and variance for normalization. During infer-
encing, the test feature will be normalized by the mean and variance from the
training set.

For each feature 𝑥𝑏,𝑐 (for sample 𝑏, channel 𝑐), The forward pass is;

𝜇𝑐 =
1
𝐵

∑
𝑏

𝑥𝑏,𝑐 , 𝜎𝑐 =
1
𝐵

∑
𝑏

(𝑥𝑏,𝑐 − 𝜇𝑐)2�̂�𝑏,𝑐 =
𝑥𝑏,𝑐 − 𝜇𝑐√
𝜎2
𝑐 + 𝜖

𝑦𝑏,𝑐 = 𝛾𝑐 �̂�𝑏,𝑐 + 𝛽𝑐𝛾, 𝛽

are learnable scale/shift parameters.

9



COM3031 lecture notes Lecture 4 – Vision Transformers and Autoencoders

Using running estimates of 𝜇𝑐 , 𝜎2
𝑐 collected during training for inferencing.

With small batches, performance degrades between training and inference dis-
tributions.

Layer-Normalization

Normalizes all features for each sample, operating within a single example
across all hidden units of a layer. The forward pass for each hidden vector
h ∈ R𝑑:

𝜇 =
1
𝑑

𝑑∑
𝑖=1

ℎ𝑖 , 𝜎2 =
1
𝑑

∑
𝑖

(ℎ𝑖 − 𝜇)2 ℎ̂𝑖 =
ℎ𝑖 − 𝜇
√
𝜎2 + 𝜖

, 𝑦𝑖 = 𝛾𝑖 ℎ̂𝑖 + 𝛽𝑖𝛾, 𝛽 ∈ R𝑑

Inferencing is identical to training so no running statistics are needed. It
is invariant to the sequence length making it crucial for the transformer en-
coder/decoders, as self-attention mixes time positions, so per-sample statistics
are more stable. LN has slightly higher computational cost than BN in CNNs
and offer less regularisation benefit because of no batch noise.

※ Lecture 4

4.1 Vision Transformers

In comparison to CNNs, ViTs create more similar representations in shallow and
deep layers. They obtain the global representation from the shallow layers, but
the local representation obtained from the shallow layers is also important.

Therefore, skip connections in ViT become even more influential than in
CNNs and substantially impact the performance and similarity of representa-
tions. ViTs appear to retain more spatial information and can learn high-quality
intermediate representations with large amounts of data.

ViTs vs CNNs

Transformers need lots of data for high accuracy. If the size of the dataset is
small, CNNs generally perform better than transformers. Training transformers
takes less time than CNNs, in terms of computational efficiency and accuracy,
transformers can be chosen if time for model training is limited.

Self-attention brings more awareness to the developed model as attention
maps can be visualized which may help developers guide how to improve the
model.

Self-Supervision
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Figure 6: Example attention map for various scene images.

Distillation with No Labels (DINO) is a self-supervised learning algorithm
that made ViTs competitive (and largely superior to) supervised CNNs.

Simply, Two ViT networks (a Student and Teacher) receive different augmen-
tations of the same image. The student is trained to match the teacher’s soft
probability distribution over patch tokens; no ground-truth labels are used.

The teacher’s weights are an exponential-moving average (EMA) of the stu-
dent (a momentum encoder), providing a slowly evolving target that prevents
collapse. This “self-distillation” objective avoids the heavy negative-pair sam-
pling used by contrastive methods while still encouraging view-invariant yet
information-rich embeddings.

iBOT

Image BERT Pre-Training with Online Tokenizer; Reformulates masked-
image modelling (MIM) pre-training as knowledge distillation (KD). It learns to
distill knowledge from the tokenizer and performs self-distillation for MIM with
help of twin teacher as an online tokenizer.

The goal is to let the target network recover each masked patch token to its
corresponding tokenizer output.

CLIP

Learned representations are formulated using 3 key features; a ViT, a con-
trastive objective, and scale. During contrastive pre-training, CLIP learns to
associate each image in a batch with its text companion, while dissociating it
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Figure 7: High level overview of the DINO architecture.

(a) Contrastive Pre-Training. (b) Zero-shot prediction.

Figure 8: MAE reconstruction example.

from the other text snippets.

To use CLIP for specific classification tasks, prompts are required where
labels of the task’s dataset are reformulated to resemble the pre-training set
while communicating the underlying context of the task. Then it predicts,
among all the encoded prompts, the one which has minimal contrastive loss
with the encoded image.

4.2 Autoencoders

An important category of unsupervised machine learning algorithms. Primarily
designed to learn efficient encodings of data. They accomplish this by com-
pressing (encoding) the input data into a reduced dimensional representation
(in latent space), and attempt reconstructing (decoding) the original data from
this compressed representation.

12
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Variational Autoencoders

VAEs introduce probabilistic elements to the AE structure, the encoder of VAE
typically models a multivariate Gaussian distribution with diagonal covariance,
and a standard multivariate Gaussian often serves as the prior. VAEs can also
generate new data points by sampling from the learned distribution.

Masked Autoencoders

(a) Masked Image. (b) Reconstruction of (a).

Figure 9: MAE reconstruction example.

MAEs are effective in vision-based tasks, often involving a specialized train-
ing mechanism. During training, a significant portion (e.g., 75%) of the image
patches are randomly masked. Then the encoder processes only the visible (un-
masked) patches. Mask tokens are inserted after encoding and a small decoder
reconstructs the entire image including the masked parts. After training, the
decoder is discarded and the encoder alone is used for image reconstruction.

MAE encoder employs ViT and the decoder involves additional transformer
blocks. This combination proves highly scalable and generalizable.

Encoder-Decoder?

the encoder-decoder architecture is similar to autoencoder conceptually but
differ significantly. Autoencoders aim to reconstruct the same input data af-
ter compression while encoder-decoder models often use data from different
sources for the input and the output.
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COM3031 lecture notes 4.3 U-Net

Figure 10: U-Net Architecture.

4.3 U-Net

U-Net is a CNN architecture specifically designed for biomedical image seg-
mentation tasks but is now widely applied across various domains involving
pixel-wise classification.

Consisting of two main parts; contracting (Encoder) and expansive (Decoder)
paths, both these paths are symmetric, forming the U-shape structure.

The contracting path follows the typical architecture of a convolutional net-
work;

• It consists of the repeated application of two 3 × 3 (unpadded) convolutions,
each followed by a ReLU block and a 2 × 2 max pool layer with stride 2 for
downsampling.

• At each downsampling step it doubles the number of feature channels.

Every step in the expansive path consists of an upsampling of the feature
map followed by a 2 × 2 ("up-)convolution(") that halves the number of feature
channels, a concatenation with the correspondingly cropped feature map from
the contracting path. And two 3 × 3 convolutions, each followed by a ReLU
block. Cropping is necessary as there is loss of border pixels every convolution.

※ Lecture 5

First, defining the concept of the latent variable denoted by random variable
𝑧. For many modalities, we can think of the data we observe as represented or
generated by this latent variable 𝑧.

Mathematically it can be modeled by the joint distribution of 𝑝(𝑥, 𝑧).
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One approach of generative modeling (“likelihood-based”) is to learn a model
to maximize the likelihood 𝑝(𝑥) of all observed 𝑥. This likelihood of purely
observed data 𝑝(𝑥) can be given by;

𝑝(𝑥) = 𝑝(𝑥, 𝑧)
𝑝(𝑧|𝑥)

and this evidence is quantified in this case as the log likelihood of the observed
data; log 𝑝(𝑥).

5.1 Evidence Lower-Bound

ELBO is the worst-case for the log-likelihood of the distribution 𝑝(𝑥). Below,
E𝑞𝜙(𝑧|𝑥)

[
log 𝑝𝜃(𝑥 | 𝑧)

]
is called the evidence for 𝑥, and 𝐷KL

(
𝑞𝜙(𝑧 | 𝑥) ∥ 𝑝(𝑧)

)
is the

KL-divergence between 𝑞𝜙 and 𝑝𝜃.

E𝑞𝜙(𝑧|𝑥)

[
log

𝑝(𝑥, 𝑧)
𝑞𝜙(𝑧 | 𝑥)

]
= E𝑞𝜙(𝑧|𝑥)

[
log

𝑝𝜃(𝑥 | 𝑧) 𝑝(𝑧)
𝑞𝜙(𝑧 | 𝑥)

]
= E𝑞𝜙(𝑧|𝑥)

[
log 𝑝𝜃(𝑥 | 𝑧)

]
+ E𝑞𝜙(𝑧|𝑥)

[
log

𝑝(𝑧)
𝑞𝜙(𝑧 | 𝑥)

]
= E𝑞𝜙(𝑧|𝑥)

[
log 𝑝𝜃(𝑥 | 𝑧)

]
− 𝐷KL

(
𝑞𝜙(𝑧 | 𝑥) ∥ 𝑝(𝑧)

)
.

The last line can become a maximising loss function such that we always
try to push the evidence for 𝑥 closer to 1, while minimizing the KL divergence
toward 0.

The encoder in VAE commonly models a multivariate gaussian with diagonal
covariance, the prior is often selected to be a standard multivariate gaussian. The
diffusion model is very similar to a hierarchical variational autoencoder (HVAE).

5.2 Diffusion
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q(xt|xt�1)
<latexit sha1_base64="eAZ87UuTmAQoJ4u19RGH5tA+bCI=">AAACC3icbVC7TgJBFJ31ifhatbSZQEywkOyiiZQkNpaYyCMBspkdZmHC7MOZu0ay0tv4KzYWGmPrD9j5N87CFgieZJIz59ybe+9xI8EVWNaPsbK6tr6xmdvKb+/s7u2bB4dNFcaSsgYNRSjbLlFM8IA1gINg7Ugy4ruCtdzRVeq37plUPAxuYRyxnk8GAfc4JaAlxyzclbo+gaHrJQ8TB/AjnvsmcGZPTh2zaJWtKfAysTNSRBnqjvnd7Yc09lkAVBClOrYVQS8hEjgVbJLvxopFhI7IgHU0DYjPVC+Z3jLBJ1rpYy+U+gWAp+p8R0J8pca+qyvTRdWil4r/eZ0YvGov4UEUAwvobJAXCwwhToPBfS4ZBTHWhFDJ9a6YDokkFHR8eR2CvXjyMmlWyvZ5uXJzUaxVszhy6BgVUAnZ6BLV0DWqowai6Am9oDf0bjwbr8aH8TkrXTGyniP0B8bXL+1hmu8=</latexit>

Figure 11: Directed graphical model of the Diffusion model.

Diffusion describes a generative process that generates samples from gaus-
sian noises through a process called denoising. This is described as the reverse
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process, the inverse being the forward process which is the gradual addition of
noise to images as;

𝑞(𝑥𝑡 | 𝑥𝑡−1) := 𝒩
(
𝑥𝑡 ;

√
1 − 𝛽𝑡 𝑥𝑡−1, 𝛽𝑡 𝐼

)
𝑞(𝑥0) being the distribution of 𝑥0 which generates the sequence of samples

{𝑥𝑡}𝑇𝑡=1. [𝛽1, . . . , 𝛽𝑇] denotes a variance schedule for the addition of noise and 𝑇
is a hyperparameter denoting the total number of time steps.

The forward process samples 𝑥𝑡 at an arbitrary timestep 𝑡 as given by

𝑞(𝑥𝑡 | 𝑥0) = 𝒩
(
𝑥𝑡 ;

√
𝛼𝑡 𝑥0, (1 − 𝛼𝑡)𝐼

)
where 𝛼𝑡 = Π𝑡

𝑖=1(1 − 𝛽𝑖), similarly the reverse process 𝑝(𝑥𝑡−1|𝑥𝑡) is approxi-
mated as

𝑝𝜃(𝑥𝑡−1 | 𝑥𝑡) := 𝒩
(
𝑥𝑡−1; 𝜇𝜃(𝑥𝑡 , 𝑡), �̃�𝑡 𝐼

)
where �̃�𝑡 =

1−𝛼𝑡−1
1−𝛼𝑡 𝛽𝑡 , and 𝜃 represents the learnable parameters. Here the

reverse process may be reformulated as

𝜇𝜃(𝑥𝑡 , 𝑡) =
1√

1 − 𝛽𝑡

(
𝑥𝑡 −

𝛽𝑡√
1 − 𝛼𝑡

𝜖𝜃(𝑥𝑡 , 𝑡)
)

where 𝜖𝜃 is the noise estimation network. The objective (loss) function of
diffusion can be given by reformulating the forward process;

ℒ𝜃(𝑥0, 𝑡) = E𝑥0 ,𝜖,𝑡

[𝜖 − 𝜖𝜃
(√

𝛼𝑡 𝑥0 +
√

1 − 𝛼𝑡 𝜖, 𝑡
)2

]
Algorithms

Seperate to the Training and Sampling of the model (Algorithms 12a, 12b),
diffusion is divided into two parts: forward and reverse diffusion. Forward
diffusion is done using the closed-form formula while reverse diffusion is usually
the goal, to be used with a trained neural network (likely U-Net).

Approximating the denoising 𝑞, we need to approximate noise 𝜖𝑡 using the
neural network 𝜖𝜃

※ Lecture 6

6.1 Diffusion Cont.

Stable Diffusion
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1: repeat
2: x0 ∼ 𝑞(x0)
3: 𝑡 ∼ Uniform{1, . . . , 𝑇}
4: 𝝐 ∼ 𝒩(0, I)
5: Take a gradient-descent step on

∇𝜃

𝝐 − 𝝐𝜃
(√

�̄�𝑡 x0 +
√

1 − �̄�𝑡 𝝐, 𝑡
)2

6: until converged

(a) Training

1: x𝑇 ∼ 𝒩(0, I)
2: for 𝑡 = 𝑇, . . . , 1 do
3: z ∼ 𝒩(0, I) if 𝑡 > 1 else z = 0

4: x𝑡−1 =
1√
𝛼𝑡

(
x𝑡 −

1 − 𝛼𝑡√
1 − �̄�𝑡

𝝐𝜃(x𝑡 , 𝑡)
)
+

𝜎𝑡 z
5: end for
6: return x0

(b) Sampling

Aims to accelerate the diffusion process by conducting it within the latent
space. Known as Latent Diffusion Model (LDM), it performs faster than standard
diffusion.

It works by training an autoencoder to learn to compress the image data into
lower-dimensional representations. Then, using the trained encode 𝐸, encode
the full image into lower dimensional latent data. And using the decoder 𝐷,
decode the latent data back into an image.

After encoding the images into latent data, forward and reverse diffusion
processes are conducted in this latent space.

Figure 12: Conditioning mechanism within Stable Diffusion’s U-Net.

The real powerful aspect about Stable Diffusion is its ability to generate
images with text prompts by modifying the inner diffusion model to accept
conditioning inputs. By augmenting denoising U-Net with cross-attention, the
model is turned into a conditional image generator.

The switch in Diagram 12 controls the different types of conditioning inputs;

• Text inputs - first converted into embeddings (vectors) using a language
model 𝜏𝜃, then mapped into the U-Net via the multi-head attention layer.
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• Other spatial inputs - (e.g., semantic maps, images, inpainting) the condi-
tioning can be done using concatenations.

Training is similar to normal diffusion, the loss function uses latent data 𝑧𝑡
instead of image 𝑥𝑡 , and the conditioning input 𝜏𝜃(𝑦) is added to the U-Net.

ℒLDM = E𝑡 ,𝑧0 ,𝜀,𝑦

[𝜀 − 𝜀𝜃
(
𝑧𝑡 , 𝑡 , 𝜏𝜃(𝑦)

)2
]

6.2 GANs

Figure 13: The most basic form of the GAN architecture.

Generative Adversarial Networks - The big picture for this class of models
is generating data from scratch. Mainly focused on images, there is growing
application in other domains.

Given a set of training data, GANs learn to estimate the underlying probabil-
ity distribution of the data. Then generate samples from the learnt probability
distribution that may not be present in the original training set.

The generator𝐺(𝑥) takes a random vector as input and tries to produce images
similar to the training set 𝑥. The discriminator network𝐷(𝑥) is a binary classifier
that tries to distinguish between the real images according to the training set 𝑥
and the fake images as produced by 𝐺(𝑥).

With this discriminator, the model is able to use it as a loss function to guide
the generator to create images close to indistinguishable to the real training
samples.

Training

This means that both networks are trained in alternating steps and are locked
in a competition to improve themselves. The discriminator ideally eventually
identifies tiny differences between real and generated samples, and the generator
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creates images that the discriminator cannot tell the difference between. The
GAN model should then converge and produce natural looking images.

Backpropagation The output of the discriminator 𝐷(𝑥) is the probability of 𝑥
being a real image. The goal is to maximise the change of recognising real and
fake images.

On the generator 𝐺(𝑥), its objective function should model the generation
of samples with the highest value of 𝐷(𝑥) to fool the discriminator. Once both
objectives are defined, they are learned jointly by altering gradient descent to
fix the generator model’s parameters with the output of the discriminator per
iteration of gradient descent. The same is true vice-versa with the discriminator.
Fixing the discriminator and training the generator for a single iteration.

6.3 CycleGAN

Figure 14: CycleGAN Architecture

A variant of GANs originally proposed for unpaired image-to-image trans-
lation. Its overall architecture (stolen from the group coursework) is shown in
Figure 14.

Simply put, generator 𝐺𝐵𝐴 maps sample images 𝐵 to 𝐴. and 𝐺𝐴𝐵 maps
the inverse of this. The discriminator functions the same, trying to distinguish
which images are real and fake.

ℒGAN(𝐺BA, 𝐷A, 𝐵, 𝐴) = E𝑎∼𝑝data(𝑎)
[
log𝐷A(𝑎)

]
+ E𝑏∼𝑝data(𝑏)

[
log

(
1 − 𝐷A

(
𝐺BA(𝑏)

) ) ]
The real innovation of CycleGAN is the cycle consistency loss which de-

scribes the absolute error between the input and reconstructed images. With the
objective function;
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ℒcyc(𝐺BA, 𝐺AB) = E𝑏∼𝑝data(𝑏)
[
∥𝐺AB

(
𝐺BA(𝑏)

)
− 𝑏∥1

]
+ E𝑎∼𝑝data(𝑦)

[
∥𝐺BA

(
𝐺AB(𝑎)

)
− 𝑎∥1

]
This objective ensures the image translation cycle should be able to bring the

generated image back to the original which is called forward cycle consistency.

The full combined objective is therefore;

ℒ(𝐺BA, 𝐺AB, 𝐷B, 𝐷A) = ℒGAN(𝐺BA, 𝐷A, 𝐵, 𝐴)
+ ℒGAN(𝐺AB, 𝐷B, 𝐴, 𝐵)
+ 𝜆ℒcyc(𝐺BA, 𝐺AB)

where 𝜆 controls the relative importance of either objectives. The optimal
solution can be given by solving for;

𝐺∗
BA, 𝐺

∗
AB = arg min

𝐺BA , 𝐺AB
max
𝐷B , 𝐷A

ℒ(𝐺BA, 𝐺AB, 𝐷B, 𝐷A)
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