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Abstract
Using the LED diffusion model as a framework,
we evaluate its effectiveness in enhancing low
quality chest x-rays (CXR). The dataset used is
a subset of the PadChest dataset containing 1000
super-negative exposure (low-quality) CXR im-
ages, and 1000 near-zero exposure (high-quality).
Following the LED framework, we first imple-
ment a CycleGAN to learn a degradation mapping
between unpaired high-quality and low-quality
images, creating a paired dataset of high-quality
images and their generated mapping. Then a con-
ditional diffusion model is trained to learn the
inverse. Evaluating on a pre-trained ResNet-18
model, our enhancing diffuser demonstrates im-
provement in diagnostic accuracy on low-quality
CXRs from 56.6% to 66.3%, narrowing most of
the gap to high-quality images (73.9%).

1. Introduction
Chest X-ray images frequently suffer from noise, low con-
trast, blurring, and various other degradation issues. These
issues may arise due to varying factors such as poor hard-
ware maintenance and low-dose imaging. Enhancement to
these images can offer medical practitioners higher accuracy
in diagnosing patients but must be paired with responsible
techniques used in regenerating images. The goal of the
project is to develop a diffusion-based restoration pipeline
for chest X-rays such that low quality images can be restored
to sufficient quality for evaluation.

Inspired by the Learning Enhancement from Degradation
(LED) framework in (Cheng et al., 2023), which originally
was used on retinal fundus images. We proposed utilising
this model on chest X-ray images can yield similar promis-
ing results. The proposed LED framework first learns a
degradation mapping from unpaired high quality images
onto low quality ones through a CycleGAN-based (Zhu
et al., 2020) degradation network. After this, the framework
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embeds the high quality image into a Gaussian distribu-
tion with a paired low-quality image, and aims to provide
enhancement while preserving relevant characteristics and
minimising hallucinations. This coursework will explore
the feasibility, existing and relevant literature, architectural
details, evaluation metrics, and existing constraints of the
proposed model.

1.1. Literature Review

The problem of low quality medical imaging is a topic of
high concern among medical researchers, recent success
with deep learning models for image processing suggests
that these methods may obtain similar successes within the
medical domain.

Traditionally, medical image practitioners have relied on the
use of global enhancement methods including histogram
equalisation (HE) (Abdullah-Al-Wadud et al., 2007) and
contrast limited adaptive histogram equalisation (CLAHE)
(Zuiderveld et al., 1994). Which both operationally increase
the contrast of an image, however, CLAHE further adds
an explicit clip limit to every section of the image’s his-
togram so local contrast increases but restricts noise growth.
(Nefoussi et al., 2020) compared HE and CLAHE with un-
sharpened images on a CNN pneumonia classifier and found
that both methods gave a boost in recall but in so doing lost
precision and had no significant benefit in accuracy on the
RSNA Pneumonia dataset (Anouk Stein et al., 2018).

There exist other basic image pre-processing techniques that
remain in use for CXR processing, the results in (Hadef
et al., 2024) conclude that geometric and colour transforma-
tions can offer minor but significant increases in precision,
recall and F-score, but did not explore any SOTA deep learn-
ing approaches.

(Anand et al., 2023) proposed a deep contrast diffusion
network which utilised a multi-level CLAHE process to de-
termine the optimal amount of contrast to diffuse, and then
is followed by a CNN that diffuses that contrast back into
each region of the original chest X-ray. Though the results
are promising, it is still unclear whether contrast alone is
enough for medical diagnoses, and room for enhancing ad-
ditional features for extraction must be considered, which
may not be captured by contrast.
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Figure 1. Example of chest-X-ray enhancement using the LED framework.

(Ma et al., 2021) proposed a novel bi-directional GAN called
the structure and illumination constrained GAN (StillGAN)
for medical image enhancement, and argued that most ex-
isting bi-directional GANs are ineffective in capturing lo-
cal detail. Though this may be true, it is easier to attach
lightweight add-ons through the diffusion process (as LED
does) to address finer details than to do this through the
initial enhancement learning process. Further, (Cheng et al.,
2023) show that the degraded fundus images using Cycle-
GAN seem to occupy the same feature space in a t-SNE
(Van der Maaten & Hinton, 2008) mapping, suggesting that
it may be possible to extract these features in reversing the
degradation process.

2. Model Architecture
The LED framework consists of a two step pipeline con-
sisting of an initial bi-directional GAN (in our case using
CycleGAN) to learn the data-driven degradation mapping
that converts high quality images into realistic low qual-
ity counterparts, and the inverse low-to-high enhancement
mapping. Followed by a subsequent conditional denoising
diffusion model trained on the paired examples. This section
outlines the details of these models.

2.1. CycleGAN

Figure 2. CycleGAN Architecture

As detailed in (Zhu et al., 2020), CycleGAN was initially

proposed as a model for unpaired image-to-image transla-
tion but has proved to be versatile in its application for use
in medical imagery.

Shown in Figure 2 is an overview of the architecture of
the forward process in CycleGAN. GBA is the generator
mapping function which maps the high quality images B
to low quality images A, and the generator GAB is the cor-
responding inverse mapping function. DA represents the
discriminator, which tries to distinguish generated images
from real ones through the objective function;

LGAN(GBA, DA, B,A) = Ea∼pdata(a)

[
logDA(a)

]
+ Eb∼pdata(b)

[
log

(
1−DA

(
GBA(b)

))]
DA serves as an adversary which tries to maximise LGAN
and GBA conversely tries minimising it.

The cycle consistency loss (which has an objective function
shown below) simply describes the absolute error between
the input and reconstructed images and is the main distinc-
tion between CycleGAN and other GAN architectures.

Lcyc(GBA, GAB) = Eb∼pdata(b)

[
∥GAB

(
GBA(b)

)
− b∥1

]
+ Ea∼pdata(y)

[
∥GBA

(
GAB(a)

)
− a∥1

]
The objective of which is to ensure the image translation
cycle should be able to bring the generated image back to
the original, which is called forward cycle consistency.

The full objective function is therefore;

L(GBA, GAB, DB, DA) = LGAN(GBA, DA, B,A)

+ LGAN(GAB, DB, A,B)

+ λLcyc(GBA, GAB)

where λ controls the relative importance of either objectives.
The optimal solution can be given by solving for;

G∗
BA, G

∗
AB = arg min

GBA, GAB
max
DB, DA

L(GBA, GAB, DB, DA)
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2.2. Denoising Diffusion Probabilistic Model (DDPM)

(Ho et al., 2020) describe the DDPM diffusion model as a
parameterized markov chain trained using variational infer-
ence to produce samples matching data after a finite amount
of time.

Figure 3. The diffusion process

Simply put, the diffusion model is a generative process that
generates samples from gaussian noises through the pro-
cess of denoising. This is described as the reverse process,
the inverse being the forward process which is the gradual
addition of noise to images which has the formulation;

q(xt | xt−1) := N
(
xt;

√
1− βt xt−1, βtI

)
Where q(x0) is the distribution of x0 which is used to gener-
ate the sequence of samples {xt}Tt=1, [β1, . . . , βT ] denotes
a variance schedule for the addition of gaussian noise, and T
being a hyper-parameter denoting total number of time steps.
The forward process samples xt at an arbitrary timestep t
as given by

q(xt | x0) = N
(
xt;

√
αt x0, (1− αt)I

)
Where αt = Πt

i=1(1− βi). The reverse process p(xt−1|xt)
is approximated as

pθ(xt−1 | xt) := N
(
xt−1; µθ(xt, t), β̃tI

)
where β̃t =

1−αt−1

1−αt
βt, and θ represents the learnable pa-

rameters. Here the reverse process may be reformulated
as

µθ(xt, t) =
1√

1− βt

(
xt −

βt√
1− αt

ϵθ(xt, t)

)
where ϵθ is the noise estimation network. (Cheng et al.,
2023) derive the objective function of DDPM by reformu-
lating and reparameterizing the forward process to give

Lθ(x0, t) = Ex0,ϵ,t

[∥∥ϵ− ϵθ
(√

αt x0 +
√
1− αt ϵ, t

)∥∥2]
2.3. The Overall Framework

The LED framework’s proposed diffusion model aims to
identify a mapping of low to high quality images using the
reverse process. Therefore the model must be conditioned
on low quality images x paired with corresponding high
quality images y. The degradation model d(y) = GBA
generates x̂ which trains the diffusion model to learn the
reverse process minimizing

Lθ(x̂, y, t) = Ex̂,y,ϵ,t

[∥∥ϵ−ϵθ
(√

αt y+
√
1− αt ϵ, t, x̂

)∥∥2]
The inference phase conversely requires an enhancement
model f(x) = GAB to generate an initial ’high quality’
image ŷ from a low-quality image x, which the diffusion
model further refines into a final high-quality result ŷ0.

3. Implementation
Different to the original implementation of LED, we opted
to pre-train the CycleGAN degradation model for 80 epochs
and set λ to 10 for the full objective function in Section
2.1. We chose our learning rate to be set to 0.0001, Adam
(Kingma & Ba, 2014) as our optimizer, and PatchGAN 70 x
70 (Isola et al., 2017) as the discriminator for DA and DB.

Our diffusion model is set to train for 150 epochs with early
stopping implemented, with learning rate set to 0.00001.
Timescale T was set to 1000, with a batch size of 32.

3.1. Datasets

There are currently no publicly available datasets of X-ray
images classified into high and low quality. As a result, the
dataset we used for this project is a subset of the PadChest
dataset (Bustos et al., 2020), which we pruned down to
1000 high quality images and another 1000 low quality
images based on the relative exposure. The greyscale CXR
images were originally sized at 224×224, but transformed
to 256×256 for processing through the diffusion training.

Separate to the high and low quality datasets, we used an-
other subset of data which comprised of two sets of 5000
CXR images labelled as ’normal’ and ’COPD’, totalling at
a 10,000 image dataset used for training the classifier.

3.2. Code Execution

All training, inferencing and evaluation was done on Google
Colab (Google LLC, 2025).
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4. Results
There are minimal ways of quantitatively evaluating the
quality of CXR images. As such, we resort to using classifi-
cation accuracy to gauge how well or difficult these images
are classified correctly. We evaluated performance using
the ResNet-18 architecture to correctly classify COPD and
normal images as identified by the authors of (Bustos et al.,
2020). We present our accuracies over 4 different test sets
in Table 1.

Test Set Test Accuracy
Near Zero (Target) 73.9%
Super Negative (Baseline) 56.6%
Enhanced Super Negative 66.3%

Table 1. Test accuracy across different datasets

The ”Super Negative” test set shows the lowest accuracy,
suggesting these images are more difficult to classify cor-
rectly. The ”Enhanced Super Negative” set shows improved
accuracy of 9.7% to the ”Super Negative” set, indicating that
the enhancement applied to these images has a correlating
effect on enhancing identifiable medical features.

While structural consistency has not been analysed, the
improvement in classification accuracy using ResNet-18
implies that the key features necessary for accurate classifi-
cation are preserved in the enhanced images.

4.1. Critical Evaluation

Figure 4. body shape hallucinations in the CycleGAN degradation
process

The integrity and structure of medical images are impor-

tant not just for performance evaluations, but it is unethi-
cal for medical practitioners to diagnose based on models
which change these important features. Unfortunately, due
to reasons beyond our control, the dataset we conducted
this experiment on had an imbalance of body types between
the high- and low-quality images. As such, our degrada-
tion model was trained to learn a mapping that, in a select
few cases, morphs the skeletal structure of the body (see
Figure 4). However, this is only partially observable (and
potentially negligible) in the reverse (enhancement) process.
Considering the amount of hallucination in the reverse pro-
cess is shown to be minimal, and that our results show a
positive result, we maintain that our implementation has
been successful. However, for ethical and performance rea-
sons, more work must be done on better procurement of
CXR dataset samples so that there is negligible hallucina-
tion.

5. Conclusion
This project adapts the Learning Enhancement from Degra-
dation (LED) framework to the task of CXR image restora-
tion by combining a CycleGAN with a conditional denoising
diffusion model. This report explains our motivations and
findings from reviewing SOTA methods published by ex-
ternal research (Section 1) and details the architecture of
the proposed model (Section 2). We attempted training the
model on a rudimentary dataset and yielded promising re-
sults, suggesting that the proposed framework has potential
for real-world medical use, if properly conducted within
safe and responsible implementation parameters.

We show that the results of our evaluation (Section 4) quanti-
tatively conclude that the enhanced images yield significant
improvements in being labeled by the ResNet-18 classifier.

5.1. Future Work

Further research must be done on different variations of the
LED framework for a more comprehensive overview of the
method. This may include a different model to CycleGAN
(e.g.; using StillGAN (Ma et al., 2021) may potentially
improve the model) to learn the data-driven degradation
mapping, and experimenting with different diffusion archi-
tectures. The hyperparameters chosen for this project were
arbitrarily chosen to match time constraints and computing
power, and it is likely that a better enhancer can be produced
given more optimized parameters.

Future work will most likely require a more comprehensive
and carefully audited dataset to reduce imbalance of features
in the degradation mapping. To be commercially viable, this
will likely require more commitment on the researcher’s end
to procure such a dataset, as there are likely ethical concerns
as mentioned in Section 4.1.
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