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Abstract—This paper explores the application of Continuous
Ant Colony Optimisation (CACO) for optimising Convolutional
Neural Networks (CNNs) and compares its performance to
popular gradient descent and population-based optimisation
algorithms. The study evaluates these optimisation techniques in
the context of training CNNs to classify images from the CIFAR-
10 dataset, a standard benchmark widely used for training in
machine learning problems. Our analysis shows that gradient
descent continues to outperform population-based in terms of
efficiency and accuracy. However, CACO achieves the best loss
due to its superior ability to reach generalised solutions, and we
discuss the relative advantages and limitations which lead to this
result.

I. INTRODUCTION

Image classification is a fundamental task in computer
vision which aims to categorise images into predefined classes.
Although this is a trivial task for humans, achieving similar
performance in artificial systems is challenging due to the
extreme variability of objects within the same class. Gradient
descent is the most common algorithm for optimisation prob-
lems, however some optimisation problems are too complex
and gradient descent methods can be insufficient in finding
the optimal solution. Population-based optimisation algorithms
such as Genetic Algorithm and Ant Colony Optimisation
can be employed instead to solve this problem. This article
presents a modified Continuous Ant Colony Optimisation and
its performance compared to Genetic Algorithm and Adam,
a baseline gradient descent method. In section III, we give a
detailed overview of the Convolutional Neural Network archi-
tecture we chose to evaluate these algorithms on and why it
was chosen. Thereafter, in section IV we provide a description
of Continuous Ant Colony Optimisation with details of our
implementation and justification for our decision to use it. In
section V, we provide numerical results comparing the three
algorithms, with an explanation of the relative advantages and
limitations which lead to those results. Finally, in section VI
we attempt to implement NSGA-II to train the model as a
bi-objective problem, and discuss whether this is effective for
our specific problem.

II. LITERATURE REVIEW

A. Convolutional Neural Networks (CNNs) and the CIFAR-10
dataset

CNNs are designed to resemble the human visual system,
and operate by extracting features from input data and using
them to classify the image.

The Tiny Images dataset [1] was created in 2006 and
contains 80 million 32x32 images classified into 53,464
groups. These groups are each a noun, which were used to
automatically search and download the corresponding images
available from the internet at the time. These were collected
by downloading images from search engines available at the
time, using every English noun in the WordNet database [2].
Due to the nature of online image search technology, the given
labels in the Tiny Images dataset are extremely unreliable and
can only be used as a rough label. Additionally, as the Tiny
Images dataset has never been carefully examined, there are
several classes labelled after offensive nouns such as ethnic
slurs and derogatory terms [3]. For this reason, as of 2020, the
Tiny Images dataset has been formally taken offline and MIT
has requested for the community to refrain from continuing
to use it in the future. The CIFAR-10 dataset [4] is a labelled
subset of the Tiny Images dataset consisting of 60,000 images
categorised into 10 classes: airplane, automobile, bird, cat,
deer, dog, frog, horse, ship, and truck. Each class contains
6000 images, split into 5000 for training and 1000 for testing.
It was created by a group of students manually filtering out
mislabelled images using the rough labels given. Although the
CIFAR-10 dataset was derived from the Tiny Images dataset,
it is not affected by its shortcomings due to each image being
manually checked.

ResNet-50 is a 50 layer deep convolutional neural network
architecture which has been trained on large datasets to
achieve state-of-the-art results in image classification. The
average performance of ResNet-50 on the CIFAR-10 dataset is
78.10%, with the lowest being 61.90% on the cat class, and the
highest being 90.80% on the airplane class [5]. These results
were obtained by using a pretrained version of ResNet-50 [6],



which was trained on 1.28 million images in 1000 classes
from the ImageNet dataset [7]. Therefore, these results can be
significantly improved by using the ResNet-50 architecture to
train a model on the CIFAR-10 dataset, and this performance
can not be used to compare with our models results.

B. The Adam Optimiser

Gradient descent is the most common algorithm for opti-
misation problems, where the goal is to minimise the loss
function by calculating the gradient and iteratively updating
the model’s weights to follow the gradient towards the optima.
Adaptive Movement Estimation (Adam) is a gradient descent
optimisation algorithm which combines the benefits of two
gradient descent methods, Momentum, and Root Mean Square
Propagation [8] [9].

Momentum takes the exponentially decaying average of past
gradients, which is used to accelerate the convergence gradient
descent by effectively dampening the change in the gradient.
In Adam this is given by:

mt = β2 ·mt + (1− β2) · (δL/δwt)

Root Mean Square propagation (RMSprop) takes the exponen-
tially decaying average of past squared gradients. This term
V scales the learning rate according to the gradient, allowing
for the benefits of a decaying learning rate while not suffering
from the risk of the learning rate being permanently decayed.
This is given by:

vt = β2 · vt + (1− β2) · (δL/δwt)
2

As both mt and vt are initially set to zero, during the initial
time steps while decay rates are small, they are biased towards
zero so the bias-corrected m̂t and v̂t are computed:

m̂t = mt ÷ (1− βt
1)

v̂t = vt ÷ (1− βt
2)

These are used to yield the Adam update rule:

θt+1 = θt −
η√

v̂t + ϵ
m̂t

C. Population-based optimisation algorithms (POAs)

For complex optimisation problems involving multimodal-
ity, discontinuity, and noise, traditional gradient-based meth-
ods are no longer sufficient, and different kinds of optimisation
algorithms must be employed instead [10]. POAs are often
used to solve these problems due to their ability to avoid
getting trapped in local optima and more effectively explore
the solution space due to the inclusion of randomness in its
operators. POAs begin with an initial population of individuals
which search the solution space and eventually converge into
a solution.

There are two main categories of POAs: Evolutionary
Algorithms (EAs) and Swarm Intelligence Algorithms (SIAs).
Genetic Algorithms (GAs) and Differential Evolution are
popular EAs which try to mimic biological evolution by using
selection, mutation and reproduction. Whereas SIAs mimic the

Fig. 1. Training cost of different optimisers on the CIFAR-10 dataset over
45 epochs [9]

collective behaviour of decentralised systems in nature, with
examples being Particle Swarm Optimisation and Ant Colony
Optimisation.

D. Ant Colony Optimisation (ACO)

ACO is a POA developed by Marco Dorigo, inspired by the
behaviour of foraging ants [11]. Initially used for solving com-
binatorial problems, there have been commendable attempts
to extend the algorithm toward continuous domains [12]. The
outline of ACO is that ants choose to move from node x to y
based on a probability calculated using;

1) Trail Level: This is controlled by the pheromones
deposited by previous ants on each edge.

2) Path Attractiveness: Determined based on a heuristic
that indicates the a priori desirability of that move.

A high level overview of this algorithm is given in Algo-
rithm 1. Where each iteration is seperated into 3 phases.

Algorithm 1 Ant Colony Optimiser
1: while termination conditions not met do
2: generateSolutions()
3: daemonActions()
4: pheromoneUpdate()
5: end while

1) GenerateSolutions(): encapsulates the part of the pro-
gram that initialises ants, trail levels and attractiveness.
Different applications of ACO will have different initial-
isations.

2) daemonActions(): is the algorithm moving ants from
node x to y corresponding to a more complete solution,
based on the probability pkxy for each ant k given by

pkxy =
(τxy)

α
(ηxy)

β∑
z∈Allowed y (τxz)

α
(ηxz)

β



where τxy and ηxy are trail level and attractiveness of
the edge xy respectively. α and β are parameters to
control the influence of τ and η respectively. τxz and
ηxz represent other possible state transitions.

3) pheromoneUpdate(): Trails usually update when all
ants have completed their solutions, and vary by dif-
ferent implementations, but commonly make use of a
pheromone evaporation coefficient which allow unfit
solutions to be less likely to be selected over time.

E. Our Contribution

This project compares various existing optimisation meth-
ods for optimising a CNN against a modified ACO algorithm.
Our proposed algorithm is modified to treat ant solutions as
points in continuous space and uses a dynamic probability dis-
tribution modelled after pheromone calculations in traditional
ACOs. However, we utilise a fitness function to determine
probabilities instead of pheromones and attractiveness.

III. SELECTED ARCHITECTURE

Fig. 2. Diagram of CNN Architecture

The architecture selected for this project is a Convolutional
Neural Network. A Convolutional Neural Network was chosen
due to its high accuracy on image classification problems
while being simple to implement. A detailed overview of the
architecture is defined as:

1) Convolutional Layers:
a) The first layer applies 32 filters of size 3x3 over

the input image.
b) The second layer applies 64 filters of size 3x3 over

the output of the previous layer.
c) The third layer applies 128 filters of size 3x3 to

the output of the previous layer.

2) Pooling Layers:
a) After every convolutional layer, a max-pooling is

applied, defined by a 2x2 filter with a stride of 2
for downsampling.

3) Fully Connected Layers:
a) The first layer takes the flattened feature map of

size 2048 and maps it to 256 neurons, followed by
a ReLU activation and dropout of 0.5.

b) The second layer takes the output from layer 1 of
size 256 and maps it to 10 output neurons for the
10 classes in CIFAR-10.

c) Softmax is then applied to the output to give a
probabilistic output of the class predictions.

The configuration of the model is illustrated using the layer
diagram in Figure 2

This configuration proved to be effective for image clas-
sification in the CIFAR-10 dataset with a high accuracy and
minimal overfitting. A dropout of 0.5 was included to avoid
overfitting and improve generalisation. The three convolutional
layers were sufficient to process the image to a ready state for
the fully connected layers.

IV. TRAINING APPROACH

Our chosen algorithm is an adaptation of Continuous Ant
Colony Optimisation (CACO). [13] It starts with a uniformly
distributed population of individuals (ants) as a point in n
dimensional space within a set of bounds defined in the
hyperparameters, and calculates the fitness of each individual.
After every individual is evaluated, a probability distribution
function is generated with respect to the fitnesses of each
ant and the global best ants of previous iterations using
multivariate normal distributions.

The algorithm we implemented is based on the algorithm
presented in Algorithm 2.

The next generation of ants is produced randomly according
to the probability distribution function, with a high density of
new solutions in high-fitness areas of the search space, and a
lower density of new solutions in lower-fitness areas.

The global best ant of each iteration is kept in a list to allow
the effect of that ant to persist across generations to reduce
the risk of losing a global optimal solution. However, the
probability distribution function of each global best evaporates
over each iteration to make more recent global optima more
likely to be chosen to avoid focusing too much on less optimal
global optima.

Our chosen algorithm differs from the paper by making the
probability distribution function using all ants and scaling their
contribution based on the fitness of each ant, making fitter
areas in the search space more likely than less fit areas. This
creates a balance of exploration and exploitation by focusing
the search in local optima while allowing for some solutions
to explore outer areas. This will reduce the convergence speed,
but allows each individual a chance to explore their area in the
search space. After each iteration, the covariance matrix (cov)
is reduced, this allows for the probability of a chosen new ant



Algorithm 2 Continuous Ant Colony Optimisation (CACO)
Require: An objective function f(x) ∈ R, where x ∈ Rn

1: ants← Initialise n ants according to a uniform distribution
2: cov← identity covariance matrix
3: best ants← ∅
4: for each iteration in epoch count do
5: for each batch in train loader do
6: fitnesses← evaluate all ants
7: best ant← iteration best solution
8: add best ant to best ants
9: for i = 1 to n do

10: ant temp← choose a random ant according to
the fitness of the ants

11: ant ← sample ant randomly according to a
multivariate Gaussian of ant temp with covariance matrix
cov

12: end for
13: scale down the value of cov
14: end for
15: end for
16: Sbest

G ← find best solution in best ants return Sbest
G

to be closer to other existing ants, thus allowing exploitation
in later generations.

Our implementation of CACO may have some limitations
in high-dimensional search spaces. The method of sampling
the next generation involves generating a random multivariate
normal in the same dimensionality as the search space. The
sampling method requires generating a multivariate Gaussian
with a high number of dimensions (2570 in the case of our
example model), which uses the Cholesky decomposition with
time complexity of O(n3) where n is the number of dimen-
sions. This is manageable with our example by utilising multi-
processing, but may become intractable for higher-dimensional
problems. Multivariate normal distributions are very flexible,
allowing for a vast range of shapes using different covariance
matrices, and allows for a continuous, smooth shape without
cutting off suddenly. However, a possible area to improve
the performance of the generation of new individuals is to
have a simpler probability distribution function, such as a
radial distribution which may have significantly better runtime
performance at the cost of losing the benefits of the normal
distribution.

The CACO algorithm requires sensitive problem-specific
fine-tuning of hyper parameters and implementation for some
problems. The function for reducing the covariance matrix
in the multivariate normal distributions worked well for our
image classification task, but may need to be adjusted for
simpler or more complex problems.

CACO was chosen as the optimiser for the convolutional
neural network because of its flexibility in implementation,
and ability to converge to global optima. With our variation of
the implementation of CACO, it has a balance of exploration
and exploitation throughout the training process by fine-

tuning the Gaussians for each ant by reducing the covariance
matrix. In our experiments, CACO outperformed the GA we
implemented with the same population size, demonstrating
better convergence for the image classification task. Addi-
tionally, our implementation is highly generalisable, capable
of handling problems with any dimensionality, provided it is
not excessively large (e.g. many thousands of dimensions).
For extremely high-dimensional problems, alternative simpler
probability distributions than the multivariate normal may be
considered to maintain computational feasibility. Furthermore,
the CACO algorithm is not constricted to image recognition
tasks, it can be adapted to any fitness function, making it a
possible choice for a wide range of optimisation problems.

V. RESULTS

Fig. 3. Loss calculated over training CNN with each optimiser

The results in table I are generated using values extracted
from training the model with 3 different optimisers. GA and
CACO are only applied to the final fully connected layer of our
model to save computation for this project, further work may
involve extending these metaheuristic algorithms to optimise
the whole model.

Method Accuracy Total Loss
Adam 0.7569 55.36522344
GA 0.3945 479.9376783
CACO 0.6162 5.262152837

TABLE I
PERFORMANCE OF OPTIMISATION METHODS

In line with our expectations, we found that Adam outper-
forms both the GA and CACO optimisers with an accuracy
of 75.69%, GA and CACO getting accuracies of 39.45% and
61.62% respectively. Our CACO optimiser achieves the best
loss even surpassing Adam, which is not far from our expec-
tations because of the optimiser’s ability to reach generalised
solutions. As the cross entropy loss function calculates loss
based on the probability output of the model, it suggests
that CACO makes small errors in probability for wrong



classifications, but at a larger frequency than that of Adam.
This makes CACO a candidate solution for implementations
that require very low overfitting.

GA is the lossiest optimiser in this comparison which can be
attributed to the nature of mutation and selection of candidate
individual solutions. There is no objective function that an
individual can optimise from, solutions converge merely by
selection and have no means of minimising loss directly.
GA is likely to converge to higher accuracies and lower
loss with more generations. However, doing so will require
large computational requirements and extending this toward
multiple layers of the model will be impractical for simple
use cases.

VI. TRAINING AS A BI-OBJECTIVE PROBLEM

The results shown in Figure 4 are derived from training our
model on a bi-objective problem. For this project we used the
DEAP library to implement the NSGA-II algorithm. Using the
parameters set in table II, we run the algorithm for 15 gen-
erations, a population of 64 and with a crossover probability
of 0.9. The dimensions of each individual correspond to the
number of weights in the final layer and are arbitrarily bounded
to -0.5 and 0.5 to prevent individuals from being initialised
in too large a search space. These parameters are chosen to
minimise computational intensity and encourage exploitation
of optimal solutions.

Fig. 4. Results of NSGA-II Training

Parameter Value

NGEN 15 (Number of generations)
MU 64 (Number of individuals in population)
CXPB 0.9 (Crossover probability)
NDIM size of fc2 weights (Number of dimensions in individual)
BOUNDS [[−0.5, 0.5] for each dimension in NDIM]

TABLE II
PARAMETER SETTINGS FOR NSGA-II

The training problem is formulated to minimise both loss
and the sum of squared weights. The loss calculated is the

sum total loss calculated over the training and has virtually
the same usage as average loss. The Gaussian Regulariser
is the minimisation of the sum of squared weights. The
reason for doing so is justifiable when weights have significant
impact to the model overfitting and having bad generalisation.
Minimising loss (and by proxy increasing accuracy) on the
training set may lead to overfitting when not taking into
account the ability of the model to generalise. When weights
tend toward higher absolute values, the model risks suffering
from overfitting.

With the results presented in section V, our metaheuristic
models have a good ability to generalise and do not tend to
overfit, which may be attributed to the ability of metaheuristic
algorithms being able to compute global minima and not
being stuck in local optima. In the case of Adam, most
gradient descent optimisers (including Adam) address this
issue using weight decay which performs ridge regression on
weights, improving generalisation. Therefore, we believe that
the training problem is better formulated as a single objective
optimisation problem.

VII. CONCLUSION

This study established that gradient descent remains the
most effective optimiser for image classification, demonstrat-
ing better performance metrics and less computation time
compared to alternative approaches. However, the CACO
algorithm proved to be significantly more effective population-
based metaheuristic optimiser than our GA. Given its capacity
to optimise high-dimensional and non-differentiable search
spaces, the CACO algorithm can be used in a vast range of
optimisation problems. Further experimentation is necessary
to determine the extent at which this algorithm can be used in
optimisation problems.

A. Further Work

The complexity of the CACO algorithm provides opportu-
nities for refinement and generalisation. Automation of some
hyperparameters, such as linking the initial bounds of the
search space with the covariance matrix in the normal distri-
butions or correlating the covariance matrix to the population
size, could improve usability and performance. In particular,
modifications to the covariance matrix reduction function is
a point of interest as the function is critical for balancing
exploration and exploitation of the algorithm.

Our CACO algorithm will require more testing against
other metaheuristic optimisers to determine its performance
in the state of the art. Further experimentation is necessary to
determine the extent at which this algorithm can be used in
other optimisation problems.

This project uses the DEAP library to implement the GA
and NSGA-II Algorithms, parallelising the algorithm with
multiprocessing or SCOOP can speed up computation. Further
work in finding optimal parameters and running for more
generations may likely find more optimal solutions and will
benefit from parallelised computation.
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APPENDIX

Summary of Contribution For Each Member of our
Group: The Introduction and Abstract summarising the back-
ground of the problem and content of our work was written
by Ted. The Literature Review was also largely written and
researched by Ted while Subsection II-D describing the Ant
Colony Optimiser was written and researched by Pascal. The
closing paragraph in II-E summarising our contribution was
largely written by Pascal with help from Ted and Saul.

Saul designed and implemented the architecture of our
model and wrote Section III describing it. Saul also imple-
mented the Adam and GA optimisers, designed the chosen
algorithm and wrote Section IV detailing and describing it.
Saul wrote the code that generated the visual performance
metrics shown in Figure 3 and the values obtained in Table I.
Section V is collaboratively written between Ted and Pascal.

The code for the NSGA-II implementation that produced
Figure 4 was written and implemented by Pascal for Sec-
tion VI, which was also written by Pascal. Section VII
concluding our work and discussing future directions for our
work was written collaboratively between Saul and Pascal.
The final version of this report was collated and produced by
Pascal, with proofreading done by Ted and Saul.

Fig. 5. Confusion Matrix: Adam

Fig. 6. Confusion Matrix: Genetic Algorithm

Fig. 7. Confusion Matrix: Continuous Ant Colony Optimiser


